Skip to main content

Advertisement

Log in

Genome mapping of kernel characteristics in hard red spring wheat breeding lines

Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Kernel characteristics, particularly kernel weight, kernel size, and grain protein content, are important components of grain yield and quality in wheat. Development of high performing wheat cultivars, with high grain yield and quality, is a major focus in wheat breeding programs worldwide. Here, we report chromosome regions harboring genes that influence kernel weight, kernel diameter, kernel size distribution, grain protein content, and grain yield in hard red spring wheat breeding lines adapted to the Upper Midwest region of the United States. A genetic linkage map composed of 531 SSR and DArT marker loci spanned a distance of 2,505 cM, covering all 21 chromosomes of wheat. Stable QTL clusters influencing kernel weight, kernel diameter, and kernel size distribution were identified on chromosomes 2A, 5B, and 7A. Phenotypic variation explained by individual QTL at these clusters varied from 5 to 20% depending on the trait. A QTL region on chromosome 2B confers an undesirable pleiotropic effect or a repulsion linkage between grain yield (LOD = 6.7; R 2 = 18%) and grain protein content (LOD = 6.2; R 2 = 13.3%). However, several grain protein and grain yield QTL independent of each other were also identified. Because some of the QTL identified in this study were consistent across environments, DNA markers will provide an opportunity for increasing the frequency of desirable alleles through marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Alexander WL, Smith EL, Dhanasobhan C (1984) A comparison of yield and yield component selection in winter wheat. Euphytica 33:953–961

    Article  Google Scholar 

  • Anderson JA, Busch RH, McVey DV, Kolmer JA, Linkert GL, Wiersma JV, Dill-Macky R, Wiersma JJ, Hareland GA (2005) Registration of ‘Oklee’ wheat. Crop Sci 45:784–785

    Article  Google Scholar 

  • Baril C (1992) Factor regression for interpreting genotype-environment interaction in bread-wheat trials. Theor Appl Genet 83:1022–1026

    Article  Google Scholar 

  • Berman M, Bason ML, Ellison F, Peden G, Wrigley CW (1996) Image analysis of whole grains to screen for flour-milling yield in wheat breeding. Cereal Chem 73:323–327

    CAS  Google Scholar 

  • Bhatia CR (1975) Criteria for early generation selection in wheat breeding programmes or improving protein productivity. Euphytica 24:789–794

    Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Res 101:172–179

    Article  Google Scholar 

  • Busch RH, Shuey WC, Frohberg RC (1969) Response of hard red spring wheat (Triticum aestivum L.) to environments in relation to six quality characteristics. Crop Sci 9:813–881

    Google Scholar 

  • Busch RH, McVey DV, Linkert GL, Wiersma JV, Warner DO, Wilcoxson RD, Hareland GA, Edwards I, Schmidt H (1996) Registration of ‘Verde’ wheat. Crop Sci 36:1418

    Article  Google Scholar 

  • Campbell KG, Bergmem CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft by hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS, Dhaliwal HS, Ranjekar PK, Gupta VS, Weber WE (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395

    Article  CAS  Google Scholar 

  • Federer WT (1961) Augmented designs with one-way elimination of heterogeneity. Biometrics 17:447–473

    Article  Google Scholar 

  • Fehr WR (1987) Principles of cultivar development. MacMillan, New York

    Google Scholar 

  • Frohberg RC, Stack RW, Olson T, Miller JD, Mergoum M (2006) Registration of ‘Alsen’ wheat. Crop Sci 46:2311–2312

    Article  Google Scholar 

  • Gaines CS, Finney PL, Andrews LC (1997) Influence of kernel size and shriveling on soft wheat milling and baking quality. Cereal Chem 74:700–704

    Article  CAS  Google Scholar 

  • Giura A, Saulescu NN (1996) Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica 89:77–80

    Article  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Gupta K, Balyan S, Edwards J, Isaac P, Korzun V, Röder M, Gautier MF, Joudrier P, Schlatter R, Dubcovsky J, De La Pena C, Khairallah M, Penner G, Hayden J, Sharp P, Keller B, Wang C, Hardouin P, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernad M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  CAS  Google Scholar 

  • Johnson VA, Dreier AF, Grabouski PH (1973) Yield and protein responses to nitrogen fertilizer of two winter wheat varieties differing in inherent protein content of their grain. Agron J 65:259–263

    Article  CAS  Google Scholar 

  • Kamra OP (1971) Genetic modification of seed protein quality in cereals and legumes. Z Pflanzenzüchtg 65:293–306

    Google Scholar 

  • Kent-Jones DW, Amos AJ (1967) Modern cereal chemistry. Food trade Press Ltd, London

    Google Scholar 

  • Kiesselbach TA, Sprague HB (1926) Relationship of the development of the wheat spike to environmental factors. J Am Soc Agron 18:40–60

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lee K-M, Shroyer JP, Herrman TJ, Lingenfelser J (2006) Blending hard white wheat to improve grain yield and end-use performances. Crop Sci 46:1124–1129

    Article  CAS  Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Funct Integr Genomics 6:83–89

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Chao S, Anderson JA (2008) New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet 118:177–183

    Article  PubMed  CAS  Google Scholar 

  • Loffler CM, Busch RH (1982) Selection for grain protein, grain yield, and nitrogen partitioning efficiency in hard red spring wheat. Crop Sci 22:591–595

    Article  Google Scholar 

  • Mares DJ, Campbell AW (2001) Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52:1297–1309

    Article  CAS  Google Scholar 

  • Marshall DR, Ellison FW, Mares DJ (1984) Effects of grain shape and size on milling yields in wheat. 1. Theoretical-analysis based on simple geo-metric-models. Aust J Agric Res 35:619–630

    Article  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DJ, Lukow O (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL 4452 9 AC ‘Domain’. Genome 48:870–883

    PubMed  CAS  Google Scholar 

  • Nelson JC, Andreescu C, Breseghello F, Finney PL, Gualberto DG, Bergman CJ, Peña RJ, Perretant MR, Leroy P, Qualset CO, Sorrells ME (2006) Quantitative trait locus analysis of wheat quality traits. Euphytica 149:145–159

    Article  CAS  Google Scholar 

  • Payne PI, Holt LM, Lawrence GJ, Law CN (1982) The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm. Qual Plant Plant Foods Hum Nutr 31:229–241

    Article  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Prasad M, Varshney RK, Kumar A, Balyan HS, Sharma PC, Edwards KJ, Singh H, Dhaliwal HS, Roy JK, Gupta PK (1999) A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet 99:341–345

    Article  Google Scholar 

  • Rasyad A, Van Sanford DA (1992) Genetic and maternal variances and covariances of kernel growth traits in winter wheat. Crop Sci 32:1139–1143

    Article  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Robert N, Hennequet C, Bérard P (2001) Dry matter and nitrogen accumulation in wheat kernel: genetic variation in rate and duration of grain filling. J Genet Breed 55:297–306

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW, Johnson VA, Schmidt JW (1962) Grain protein content and its relationship to other plant and seed characters in the parents and progeny of a cross Triticum aestivum L. Crop Sci 2:506–508

    Article  CAS  Google Scholar 

  • Sun X-Y, Wu K, Zhao Y, Kong F-M, Han G-Z, Jiang H-M, Huang X-J, Li R-J, Wang H-G, Li S-S (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    Article  CAS  Google Scholar 

  • Tsilo TJ, Chao S, Jin Y, Anderson JA (2009) Identification and validation of SSR markers linked to the stem rust resistance gene Sr6 on the short arm of 2D in wheat. Theor Appl Genet 118:515–524

    Article  PubMed  CAS  Google Scholar 

  • Tsilo TJ, Ohm JB, Hareland GA, Anderson JA (2010a) Association of size exclusion HPLC of endosperm proteins with dough mixing and bread-making characteristics in a recombinant inbred population of hard red spring wheat. Cereal Chem 87:104–111

    Article  CAS  Google Scholar 

  • Tsilo TJ, Hareland GA, Chao S, Anderson JA (2010b) Genetic mapping and QTL analysis of flour color and milling yield related traits using recombinant inbred lines in hard red spring wheat. Crop Sci (in press)

  • Varshney RK, Prasad M, Roy JK, Kumar N, Harjit-Singh DhaliwalHS, Balyan HS, Gupta PK (2000) Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTLs for grain weight in bread wheat. Theor Appl Genet 100:1290–1294

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. North Carolina State University, Raleigh

    Google Scholar 

  • Wiersma JJ, Busch RH, Fulcher GG, Hareland G (2001) Recurrent selection for kernel weight in spring wheat. Crop Sci 41:999–1005

    Article  Google Scholar 

  • Yoon BS, Brorsen BW, Lyford CP (2002) Value of increasing kernel uniformity. J Agric Resour Econ 27:481–494

    Google Scholar 

  • Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M (2001) Genetic analysis of bread-making quality in wheat and spelt. Plant Breeding 120:13–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Minnesota Annual Conference of the United Methodist Church, the Compton International fellowship, National Research Foundation of South Africa, Department of Science and Technology of South Africa, Agricultural Research Council of South Africa, the United State Department of Agriculture-Agricultural Research Service, and the USDA Cooperative Research, Education and Extension Service, Coordinated Agricultural Project grant number 2006-55606-16629. The authors would like to thank the University of Minnesota wheat breeding scientists, Gary Linkert and Catherine Springer, and the USDA/ARS personnel, Dale Hanson, Dehdra Puhr, and Jadene Wear, for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toi J. Tsilo.

Additional information

Communicated by X. Xia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsilo, T.J., Hareland, G.A., Simsek, S. et al. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet 121, 717–730 (2010). https://doi.org/10.1007/s00122-010-1343-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1343-4

Keywords

Navigation