Skip to main content
Log in

Nucleotide diversity and molecular evolution of the PSY1 gene in Zea mays compared to some other grass species

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Phytoene synthase (PSY), which is encoded by the phytoene synthase 1 (PSY1) gene, is the first rate-limiting enzyme in the plant carotenoid biosynthetic pathway. In order to examine the genetic diversity and evolution pattern of PSY1 within the Andropogoneae, sequences of 76 accessions from 5 species (maize, teosinte, tripsacum, coix, and sorghum) of the Andropogoneae were tested, along with 4 accessions of rice (Oryza sativa L.) included as outliers. Both the number and the order of exons and introns were relatively conserved across the species tested. Three domains were identified in the coding sequence, including signal peptide (SP), PSY, and highly conserved squalene synthase (SQS) domain. Although no positive selection signal was detected at an overall coding level among all species tested, the SP domain and the region upstream of the SQS–PSY domain appear to have undergone rapid evolution, as evidenced by a high d N/d S ratio (>1.0). At the nucleotide level, positive selection and balancing selection were detected only among the yellow maize germplasm and the white maize germplasm, respectively. The phylogenetic tree based on full-length sequences of PSY1-like regions supported the monophyletic theory of the Andropogoneae and the closest relationship between Zea and Tripsacum among the Andropogoneae. Coix, which was theorized to have a closer relationship with maize due to similarities in morphology and chromosome number, has been shown in this study to have diverged relatively early from the other Andropogoneae, including maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bird CR, Ray JA, Fletcher JD, Boniwell JM, Bird AS, Teulieres C, Blain I, Bramley PM, Schuch W (1991) Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. Nat Biotechnol 9:635–639

    Article  CAS  Google Scholar 

  • Bomblies K, Doebley JF (2005) Molecular evolution of FLORICAULA/LEAFY orthologs in the Andropogoneae (Poaceae). Mol Biol Evol 22:1082–1094

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang ZW, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Bramley P, Teulieres C, Blain I, Bird C, Schuch W (1992) Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5. Plant J 2:343–349

    Article  CAS  Google Scholar 

  • Buckler ES, Holtsford TP (1996) Zea systematics: ribosomal its evidence. Mol Biol Evol 13:612–622

    CAS  PubMed  Google Scholar 

  • Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    Article  CAS  PubMed  Google Scholar 

  • Buckler ES, Gaut BS, McMullen MD (2006) Molecular and functional diversity of maize. Curr Opin Plant Biol 9:172–176

    Article  CAS  PubMed  Google Scholar 

  • Chander S, Guo YQ, Yang XH, Zhang J, Lu XQ, Yan JB, Song TM, Rocheford TR, Li JS (2008) Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet 16:223–233

    Article  Google Scholar 

  • Clark LG, Zhang W, Wendel JF (1995) A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst Bot 20:436–460

    Article  Google Scholar 

  • Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci USA 101:700–707

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR, Gorley RN (2001) PRIMER v5: user manual/tutorial. PRIMER-E Ltd, Plymouth, p 91

    Google Scholar 

  • Davis JI, Soreng RJ (1993) Phylogenetic structure in the grass family (Poaceae) as inferred from chloroplast DNA restriction site variation. Am J Bot 80:1444–1454

    Article  CAS  Google Scholar 

  • Doebley J (1990) Molecular evidence and the evolution of maize. Econ Bot 44:6–27

    CAS  Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    Article  CAS  PubMed  Google Scholar 

  • Doebley J, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134:559–570

    CAS  PubMed  Google Scholar 

  • Doebley JF, Goodman MM, Stuber CW (1984) Isoenzymatic variation in Zea (Gramineae). Syst Bot 9:203–218

    Article  Google Scholar 

  • Doebley JF, Renfroe W, Blanton A (1987) Restriction site variation in the Zea chloroplast genome. Genetics 117:139–147

    CAS  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Ducrocq S, Madur D, Veyrieras JB, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A (2008) Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 178:2433–2437

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • FAO (1995) Sorghum and millets in human nutrition. Food and nutrition series v.27, chap 2 and 5. Food and Agriculture Organization of the United Nations, Rome

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny inference package) Ver.3. 57c. Department of Genetics, University of Washington, Seattle, WA. http://evolution.genetics.washington.edu/phylip.html

  • Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  CAS  PubMed  Google Scholar 

  • Gallagher CE, Matthews PD, Li FQ, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grassed. Plant Physiol 135:1776–1783

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G, Bartley GE, Scolnik PA (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5:379–387

    Article  CAS  PubMed  Google Scholar 

  • Giussani LM, Cota-Sánchez JH, Zuloaga FO, Kellogg EA (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am J Bot 88:1993–2012

    Article  CAS  Google Scholar 

  • Hanson MA, Gaut BS, Stec AO, Fuerstenberg SI, Goodman MM, Coe EH, Doebley JF (1996) Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics 143:1395–1407

    CAS  PubMed  Google Scholar 

  • Harjes CE, Rocheford T, Bai L, Brutnell T, Kandianis CB, Sowinski S, Stapleton A, Vallabhaneni R, Williams M, Wurtzel E, Yan JB, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  CAS  PubMed  Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  Google Scholar 

  • Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92:1679–1683

    Article  CAS  PubMed  Google Scholar 

  • Li FQ, Vallabhaneni R, Yu J, Wurtzel ET (2008a) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146:1333–1345

    Article  CAS  PubMed  Google Scholar 

  • Li FQ, Vallabhaneni R, Yu J, Rocheford T, Wurtzel ET (2008b) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress-tolerance. Plant Physiol 147:1334–1346

    Article  CAS  PubMed  Google Scholar 

  • Lukens L, Doebley J (2001) Molecular evolution of the teosinte branched gene among maize and related grassed. Mol Biol Evol 18:627–638

    CAS  PubMed  Google Scholar 

  • Mangelsdorf PC, Fraps GS (1931) A direct quantitative relationship between vitamin A in corn and the number of genes for yellow pigmentation. Science 73:241–242

    Article  CAS  PubMed  Google Scholar 

  • Mason-Gamer RJ, Weil CE, Kellogg (1998) Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol Bio Evol 15:1658–1673

    CAS  Google Scholar 

  • Mathews S, Tsai RC, Kellogg EA (2000) Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B. Am J Bot 87:96–107

    Article  CAS  PubMed  Google Scholar 

  • Mathews S, Spangler RE, Mason-Gamer RJ, Kellogg EA (2002) Phylogeny of Andropogoneae inferred from phytochrome B, GBSSI, and NDHF. Int J Plant Sci 163:441–450

    Article  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  CAS  PubMed  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KF, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high-molecular weight plant DNA. Nucleic Acid Res 8:4321

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University, New York

    Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    CAS  PubMed  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  PubMed  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  CAS  PubMed  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA 101:9885–9890

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA 98:2101–2103

    Article  CAS  PubMed  Google Scholar 

  • Purugganan M (1998) The molecular evolution of development. Bioessays 20:700–711

    Article  CAS  PubMed  Google Scholar 

  • Salas Fernandez MG, Hamblin MT, Li L, Rooney WL, Tuinstra MR, Kresovich S (2008) Quantitative trait loci analysis of endosperm color and carotenoid content in sorghum grain. Crop Sci 48:1732–1743

    Article  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu XM, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggenann E, Li BL, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381

    Article  CAS  PubMed  Google Scholar 

  • Sang T (2009) Genes and mutations underling domestication transitions in grasses. Plant Physiol 149:63–70

    Article  CAS  PubMed  Google Scholar 

  • Spangler R, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281

    Article  Google Scholar 

  • SwigoHová Z, Lai JS, Ma JX, Ramakrishna VL, Liaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  Google Scholar 

  • Swofford DL (1998) PAUP*, phylogenetic analysis using parsimony (* and other methods) version 4.0 beta. Sinauer Associates, Sunderland, MA

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L). Proc Natl Acad Sci USA 98:9161–9166

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Tiffin P, Gaut BS (2001) Sequence diversity in the tetraploid Zea perennis and the closely related diploid Z. diploperennis: insights from four nuclear loci. Genetics 158:401–412

    CAS  PubMed  Google Scholar 

  • Von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleinig H (1997) Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J 12:625–634

    Article  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  CAS  PubMed  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetic models without recombination. Theor Popul Biol 7:256–276

    Article  CAS  PubMed  Google Scholar 

  • Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA 99:12959–12962

    Article  CAS  PubMed  Google Scholar 

  • Wong JC, Lambert RJ, Wurtzel ET (2004) QTL and candidate genes phytoene synthase and carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet 108:349–359

    Article  CAS  PubMed  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, Mc-Mullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (30821140352) and the specific project grants from the Harvest Plus Program and targeted funds from the World Bank and European Commission as well as from USAID, UK DFID and Canadian CIDA to International Maize and Wheat Improvement Center. Authors also greatly appreciate both anonymous reviewers for their invaluable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Sheng Li.

Additional information

Communicated by J. Yu.

Z. Fu and J. Yan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 355 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Z., Yan, J., Zheng, Y. et al. Nucleotide diversity and molecular evolution of the PSY1 gene in Zea mays compared to some other grass species. Theor Appl Genet 120, 709–720 (2010). https://doi.org/10.1007/s00122-009-1188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1188-x

Keywords

Navigation