Skip to main content

Advertisement

Log in

BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Phytophthora capsici Leonian, an oomycete pathogen, is a serious problem in pepper worldwide. Its resistance in pepper is controlled by quantitative trait loci (QTL). To detect QTL associated with P. capsici resistance, a molecular linkage map was constructed using 100 F2 individuals from a cross between Capsicum annuum ‘CM334’ and C. annuum ‘Chilsungcho’. This linkage map consisted of 202 restriction fragment length polymorphisms (RFLPs), 6 WRKYs and 1 simple sequence repeat (SSR) covering 1482.3 cM, with an average interval marker distance of 7.09 cM. QTL mapping of Phytophthora root rot and damping-off resistance was performed in F2:3 originated from a cross between resistant Mexican landrace C. annuum ‘CM334’ and susceptible Korean landrace C. annuum ‘Chilsungcho’ using composite interval mapping (CIM) analysis. Four QTL explained 66.3% of the total phenotypic variations for root rot resistance and three 44.9% for damping-off resistance. Of these QTL loci, two were located close to RFLP markers CDI25 on chromosome 5 (P5) and CT211A on P9. A bacterial artificial chromosome (BAC) library from C. annuum ‘CM334’ was screened with these two RFLP probes to obtain sequence information around the RFLP marker loci for development of PCR-based markers. CDI25 and CT211 probes identified seven and eight BAC clones, respectively. Nine positive BAC clones containing probe regions were sequenced and used for cytogenetic analysis. One single-nucleotide amplified polymorphism (SNAP) for the CDI25 locus, and two SSRs and cleaved amplified polymorphic sequence (CAPS) for CT211 were developed using sequences of the positive BAC clones. These markers will be valuable for rapid selection of genotypes and map-based cloning for resistance genes against P. capsici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Barksdale TH, Papavizas GS, Johnston SA (1984) Resistance to foliar blight and crown rot of pepper caused by P. capsici. Plant Dis 65:506–509

    Article  Google Scholar 

  • Bartual R, Lacasa A, Marsal JI, Tello JC (1994) Epistasis in the resistance of pepper to phytophthora stem blight (P. capsici L.) and its significance in the prediction of double cross performances. Euphytica 72:149–152

    Article  Google Scholar 

  • Basten CJ, Zeng ZB, Wang S (2002) Windows QTL Carthographer, version 2.0. Department of Statistics; North Carolina State University, Raleigh

    Google Scholar 

  • Bonnet J, Danan S, Boudet C, Barchi L, Sage-Palloix A, Caromel B, Palloix A, Lefebvre V (2007) Are the polygenic architectures of resistance to Phytophthora capsici and P. parasitica independent in pepper? Theor Appl Genet 115:253–264

    Article  PubMed  Google Scholar 

  • Bosland PW (1992) Chiles: a diverse crop. Hort Technol 2:6–10

    Google Scholar 

  • Bosland PW, Lindsey DL (1991) A seedling screen for phytophthora root rot of pepper, Capsicum annuum. Plant Dis 75:1048–1050

    Google Scholar 

  • Collins A, Milbourne D, Ramsay L, Meyer C, Chatot-Balandras C, Overhagemann P, De Jong W, Gebhardt C, Bonnel E, Waugh R (1999) QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour. Mol Breeding 5:387–398

    Article  CAS  Google Scholar 

  • Guerrero-Moreno A, Laborde JA (1980) Current status of pepper breeding for resistance to Phytophthora capsici in Mexico. Synopses of the IVth Eucarpia Meeting on Capsicum Wageningen (Netherlands), pp 52–56

  • Hong ST, Chung JE, An G, Kim SR (1998) Analysis of 176 expressed sequence tags generated from cDNA clones of hot pepper by single-pass sequencing. J Plant Biol 41:116–124

    Article  Google Scholar 

  • Huh JH, Kang BC, Nahm SH, Kim S, Ha KS, Lee MH, Kim BD (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theor Appl Genet 102:524–530

    Article  CAS  Google Scholar 

  • Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase Xuorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491

    Article  PubMed  CAS  Google Scholar 

  • Kanazin V, Marex LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  PubMed  CAS  Google Scholar 

  • Kang BC, Nahm SH, Huh JH, Yoo HS, Yu JW, Lee MH, Kim BD (2001) An interspecific (Capsicum annuum × C. chinense) F2 linkage map in pepper using RFLP and AFLP markers. Theor Appl Genet 102:531–539

    Article  CAS  Google Scholar 

  • Kim YJ, Hwang BK (1989) Expression of age-related resistance in pepper plants infected with Phytophthora capsici. Plant Dis 73:745–747

    Article  Google Scholar 

  • Kim DS, Kim DH, Yoo JH, Kim BD (2006) Cleaved amplified polymorphic sequence and amplified fragment length polymorphism markers linked to the fertility restorer gene in chili pepper (Capsicum annuum L.). Mol Cells 21:135–140

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Lee HR, Han JH, Yeom SI, Harn CH, Kim BD (2008) Marker production by PCR amplification with primer pairs from conserved sequences of WRKY genes in the chili pepper. Mol Cells 25:196–204

    PubMed  CAS  Google Scholar 

  • Kimble KA, Grogan RG (1960) Resistance to Phytophthora root rot in pepper. Plant Dis Rep 44:872–873

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Nahm SH, Kim YM, Kim BD (2004) Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor Appl Genet 108:619–627

    Article  PubMed  CAS  Google Scholar 

  • Lee CJ, Yoo EY, Shin JH, Lee JM, Hwang HS, Kim BD (2005) Non-pungent Capsicum contains a deletion in the capsaicinoid synthetase gene, which allows early detection of pungency with SCAR markers. Mol Cells 19:262–267

    PubMed  CAS  Google Scholar 

  • Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTL are involved in polygenic induced resistance to disease: a case study, the interaction pepper–Phytophthora capsici Leonian. Theor Appl Genet 93:503–511

    Article  CAS  Google Scholar 

  • Leonian LH (1922) Stem and fruit blight of peppers caused by Phytophthora capsici. Phytopathology 12:401–408

    Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, Van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    PubMed  CAS  Google Scholar 

  • Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389

    Article  PubMed  CAS  Google Scholar 

  • Minamiyama Y, Tsuro M, Kubo T, Hirai M (2007) QTL analysis for resistance to Phytophthora capsici in pepper using a high density SSR-based Map. Breed Sci 57:129–134

    Article  CAS  Google Scholar 

  • Oberhagemann P, Chatot-Balandras C, Schafer-Pregl R, Wegener D, Palomino C et al (1999) A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection. Mol Breed 5:399–415

    Article  CAS  Google Scholar 

  • Ogundiwin EA, Berke TF, Massoudi M, Black LL, Huestis G, Choi D, Lee S, Prince JP (2005) Construction of 2 intraspecific linkage maps and identification of resistance QTL for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). Genome 48:698–711

    Article  PubMed  CAS  Google Scholar 

  • Ortega GR, Espanol CP, Zueco JC (1992) Genetic relationships among four pepper genotypes resistant to Phytophthora capsici. Plant Breed 108:118–125

    Article  Google Scholar 

  • Ortega GR, Espanol CP, Zueco JC (1995) Interaction in the pepper- Phytophthora capsici system. Plant Breed 114:74–77

    Article  Google Scholar 

  • Park YK, Kim BD, Kim BS, Armstrong KC, Kim NS (1999) Karyotyping of the chromosomes and physical mapping of the 5S rRNA and 18S–26S rRNA gene families in five different species in Capsicum. Genes Genet Syst 74:149–157

    Article  Google Scholar 

  • Palloix A, Daubeze AM, Phaly T, Pochard E (1990) Breeding transgressive lines of pepper for resistance to Phytopthora capsici in a recurrent selection system. Euphytica 51:141–150

    Google Scholar 

  • Quirin EA, Ogundiwin EA, Prince JP, Mazourek M, Briggs MO, Chlanda TS, Kim KT, Falise M, Kang BC, Jahn MM (2005) Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto.5.2, a major QTL for resistance to Phytophthora capsici Leon. in pepper. Theor Appl Genet 110:605–612

    Article  PubMed  CAS  Google Scholar 

  • Rao G, Chaim AB, Borovsky Y, Paran I (2003) Mapping of yield-related QTL in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106:1457–1466

    PubMed  CAS  Google Scholar 

  • Reifschneider FJB, Boiteux LX, Della Bechia PT, Poulos JM, Kurada N (1992) Inheritance of adult-plant resistance to Phytophthora capsici in pepper. Euphytica 62:45–49

    Article  Google Scholar 

  • Ristaino JB (1990) Intraspecific variation among isolates of Phytophthora capsici from pepper and cucurbit fields in North Carolina. Phytopathology 80:1253–1259

    Article  Google Scholar 

  • SAS Institute Inc. (1989) SAS/STAT user’s guide. version 6, 4th edn. SAS Institute Inc., Cary

    Google Scholar 

  • Schiex T, Gaspin C (1997) CARTHAGENE: constructing and joining maximum likelihood genetic maps. Fifth international conference on intelligent systems for Mol Biol Porto Carras, Halkidiki, Greece, pp 258–267

  • Smith PG, Kimble KA, Grogan RG, Millett AH (1967) Inheritance of resistance in peppers to Phytophthora root rot. Phytopathology 57:377–379

    Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. PNAS 100:9128–9133

    Article  PubMed  CAS  Google Scholar 

  • Staples RC (2004) Race nonspecific resistance for potato late blight. Trends Plant Sci 9:5–6

    Article  PubMed  CAS  Google Scholar 

  • Sugita T, Yamaguchi K, Kinoshita T, Yuji K, Sugimura Y, Nagata R, Kawasaki S, Todoroki A (2006) QTL analysis for resistance to phytophthora blight (Phytophthora capsici Leon.) using an intraspecific double-haploid population of Capsicum annuum. Breed Sci 56:137–145

    Article  CAS  Google Scholar 

  • Thabuis A, Palloix A, Pflieger S, Daubeze AM, Caranta C, Lefebvre V (2003) Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106:1473–1485

    PubMed  CAS  Google Scholar 

  • Thabuis A, Lefebvre V, Bernard G, Daubeze AM, Phaly T, Pochard E, Palloix A (2004) Phenotypic and molecular evaluation of a recurrent selection program for a polygenic resistance to Phytophthora capsici in pepper. Theor Appl Genet 109:342–351

    Article  PubMed  CAS  Google Scholar 

  • Walker SJ, Bosland PW (1999) Inheritance of phytophthora root rot and foliar blight resistance in pepper. J Am Soc Hort Sci 124:14–18

    Google Scholar 

  • Wang K, Guo W, Zhang T (2007) Development of one set of chromosome-specific microsatellite-containing BACs and their physical mapping in Gossypium hirsutum L. Theor Appl Genet 115:675–682

    Article  PubMed  CAS  Google Scholar 

  • Wenkai X, Mingliang X, Jiuren Z, Fengge W, Jiansheng L, Jingrui D (2006) Genome-wide isolation of resistance gene analogs in maize (Zea mays L.). Theor Appl Genet 113:63–72

    Article  PubMed  CAS  Google Scholar 

  • Yi G, Lee JM, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST–SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130

    Article  PubMed  CAS  Google Scholar 

  • Yoo EY, Kim SJ, Kim JY, Kim BD (2001) Construction and characterization of a bacterial artificial chromosome library of chili pepper. Mol Cells 12:117–120

    PubMed  CAS  Google Scholar 

  • Yoo EY, Kim S, Kim YH, Lee CJ, Kim BD (2003) Construction of a deep coverage BAC library from Capsicum annuum, ‘CM334’. Theor Appl Genet 107:540–543

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Center for Plant Molecular Genetics and Breeding Research (CPMGBR) through the Korea Science and Engineering Foundation (KOSEF) and Korea Ministry of Science and Technology (MOST) and a grant (20050401034791) from the BioGreen 21 Program, Rural Development Administration, Suwon, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Dong Kim.

Additional information

Communicated by I. Paran.

H.-J. Kim and S.-H. Nahm contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Nahm, SH., Lee, HR. et al. BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.). Theor Appl Genet 118, 15–27 (2008). https://doi.org/10.1007/s00122-008-0873-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0873-5

Keywords

Navigation