Skip to main content

Advertisement

Log in

Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The objective of the present study was to identify quantitative trait loci (QTL) influencing agronomic performance across rain fed Mediterranean environments in a recombinant inbred line (RIL) population derived from the barley cultivars ER/Apm and Tadmor. The population was tested in four locations (two in Syria and two in Lebanon) during four consecutive years. This allowed the analysis of marker main effects as well as of marker by location and marker by year within location interactions. The analysis demonstrated the significance of crossover interactions in environments with large differences between locations and between years within locations. Alleles from the parent with the higher yield potential, ER/Apm, were associated with improved performance at all markers exhibiting main effects for grain yield. The coincidence of main effect QTL for plant height and yield indicated that average yield was mainly determined by plant height, where Tadmor’s taller plants, being susceptible to lodging, yielded less. However, a number of crossover interactions were detected, in particular for yield, where the Tadmor allele improved yield in the locations with more severe drought stress. The marker with the highest number of cross-over interactions for yield and yield component traits mapped close to the flowering gene Ppd-H2 and a candidate gene for drought tolerance HVA1 on chromosome 1H. Effects of these candidate genes and QTL may be involved in adaptation to severe drought as frequently occurring in the driest regions in the Mediterranean countries. Identification of QTL and genes affecting field performance of barley under drought stress is a first step towards the understanding of the genetics behind drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bahieldin A, Mahfouz H, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427

    Article  CAS  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds-ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41–1. Theor Appl Genet 107:1215–1225

    Article  PubMed  CAS  Google Scholar 

  • Benjamini J, Yekutieli B (2005) Quantitative trait loci analysis using the false discovery rate. Genetics 171:783–790

    Article  PubMed  CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water use efficiency and yield potential—are they compatible, dissonant or mutually exclusive? Aust J Agr Res 56:1159–1168

    Article  Google Scholar 

  • Boyd WJR, Li CD, Grime CE, Cakir CR, Potipibol S, Kaveeta L, Men S, Jalal Kamali MR, Barr AR, Moody DB, Lance RCM, Logue SJ, Raman H, Read BJ (2003) Conventional and molecular genetic analyses of factors contributing to the variation in the timing of heading among spring barley (H. vulgare L.) genotypes grown over a mild winter growing season. Aust J Agric Res 54:1277–1301

    Article  CAS  Google Scholar 

  • Ceccarelli S, Grando S (1991) Selection environment and environmental sensitivity in barley. Euphytica 57:157–167

    Article  Google Scholar 

  • Ceccarelli S, Acevedo E, Grando S (1991) Breeding for yield stability in unpredictable environments: single traits, interaction between traits, and architecture of genotypes. Euphytica 56:169–185

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Baum M, Udupa SM (2004) Breeding for drought resistance in a changing climate. In: Rao SC, Ryan J (eds) Challenges and Strategies for dryland agriculture. CSSA Spec. Publ. 32. ASA and CSSA, Madison, WI, pp 167–190

    Google Scholar 

  • Diab AA, Teulat-Merah B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109(7):1417–1425

    Article  PubMed  CAS  Google Scholar 

  • Forster BP, Ellis RP, Thomas WTB, Newton AC, Tuberosa R, This D, El-Enein RA, Bahri MH, Ben Salem M (2000) The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot 51(342):19–27

    Article  PubMed  CAS  Google Scholar 

  • Forster BP, Ellis RP, Moir J, Talame V, Sanguineti MC, Tuberosa R, This D, Teulat-Merah B, Ahmed I, Mariy SAEE, Bahri H, El Ouahabi M, Zoumarou-Wallis N, El-Fellah M, Ben Salem M (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol 144(2):157–168

    Article  Google Scholar 

  • Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3(2):233–244

    Article  PubMed  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    PubMed  CAS  Google Scholar 

  • Han F, Romagosa I, Ullrich SE, Jones BL, Hayes PM, Wesenberg DM (1997) Molecular marker-assisted selection for malting quality traits in barley. Mol Breed 2(6):427–437

    Article  Google Scholar 

  • Han F, Ullrich SE, Clancy JA, Romagosa I (1999) Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Sci 143:113–118

    Article  CAS  Google Scholar 

  • Hazen SP, Safiullah Pathan M, Sanchez A, Baxter I, Dunn M, Estes B, Chang H-S, Zhu T, Kreps JA, Nguyen HT (2005) Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Funct Integr Genomics 5:104–116

    Article  PubMed  CAS  Google Scholar 

  • Hori K, Sato K, Takeda K (2007) Detection of seed dormancy QTL in multiple mapping populations derived from crosses involving novel barley germplasm. Theor Appl Genet. doi:10.1007/s00122-007-0620-3

  • Horsley RD, Schmierer D, Maier C, Kudrna D, Urrea CA, Steffenson BJ, Schwarz PB, Franckowiak JD, Green MJ, Zhang B, Kleinhofs A (2006) Identification of QTL associated with Fusarium head blight resistance in barley accession CIho4196. Crop Sci 46:145–156

    Article  CAS  Google Scholar 

  • Igartua E, Casas AM, Ciudad F, Montoya JL, Romagosa I (1999) RFLP markers associated with major genes controlling heading date evaluated in a barley germplasm pool. Heredity 83(5):551–559

    Article  PubMed  Google Scholar 

  • Kawaguchi R, Thomas G, Bray EA, Bailey-Serres J (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J 38:823–839

    Article  PubMed  CAS  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Moraleja M, Swanston JS, Munoz P, Prada PD, Elía M, Russel JR, Ramsay L, Cistué L, Codesal P, Casas AM, Romagosa I, Powell W, Molina-Cano JL (2004) Use of new EST markers to elucidate the genetic differences in grain protein content between European and North American two-rowed malting barleys. Theor Appl Genet 110:116–125

    Article  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 13:2513–2523

    Google Scholar 

  • Oraby HF, Ransom CB, Kravchenko AN, Sticklen MB (2005) Barley HVA1 gene confers salt tolerance in R3 transgenic oat. Crop Sci 45:2218–2227

    Article  CAS  Google Scholar 

  • Prada D, Ullrich SE, Molina-Cano JL, Cistué L, Clancy JA, Romagosa I (2004) Genetic control of dormancy in a Triumph/Morex cross in barley. Theor Appl Genet 109(4):62–70

    Article  PubMed  CAS  Google Scholar 

  • Reinheimer JL, Barr AR, Eglinton JK (2004) QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 109(6):1267–1274

    Article  PubMed  CAS  Google Scholar 

  • Riccardi F, Gazeau P, Jacquemot MP, Vincent D, Zivy M (2004) Deciphering genetic variation of proteome response to water deficit in maize leaves. Plant Physiol Biochem 42:1003–1011

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (2003) The SAS system for Windows, release 9.1. SAS Institute, Cary, NC, USA

  • Sayed H, Backes G, Kayyal H, Yahyaoui A, Ceccarelli S, Grando S, Jahoor A, Baum M (2004) New molecular markers linked to qualitative and quantitative powdery mildew and scald resistance genes in barley for dry areas. Euphytica 135:225–228

    Article  CAS  Google Scholar 

  • Schmierer DA, Kandemir N, Kudrna DA, Jones BL, Ullrich SE, Kleinhofs A (2005) Molecular marker-assisted selection for enhanced yield in malting barley. Mol Breed 14(4):463–473

    Article  Google Scholar 

  • Shen Q, Chen CN, Brands A, Pan SM, Tuan-Hua DH (2001) The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol Biol 45(3):327–340

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory networks of gene expression in drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Malhotra RS, Ceccarelli S, Sarker A, Grando S, Erskine W (2003) Spatial variability models to improve dryland field trials. Exp Agric 39:1–10

    Article  Google Scholar 

  • Talamé V, Sanguineti MC, Chiapparino E, Bahri H, Ben Salem M, Forster BP, Ellis RP, Rhouma S, Zoumarou W, Waugh R, Tuberosa R (2004) Identification of Hordeum spontaneum QTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol 144(3):309–319

    Article  Google Scholar 

  • Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A (1998) Several QTLs involved in osmotic adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688–698

    Article  CAS  Google Scholar 

  • Teulat B, Borries C, This D (2001a) New QTLs identified for plant water status, water-soluble carbohydrates, osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet 103:161–170

    Article  CAS  Google Scholar 

  • Teulat B, Merah O, Souyris I, This D (2001b) QTLs for agronomic traits from Mediterranean barley progeny grown in several environments. Theor Appl Genet 103:774–787

    Article  CAS  Google Scholar 

  • Teulat B, Merah O, Sirault X, Borries C, Waugh R, This D (2002) QTL for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106:118–126

    PubMed  CAS  Google Scholar 

  • This D, Borries C, Souryis I, Teulat B (2000) QTL study of chlorophyll content as a genetic parameter of drought tolerance in barley. Barley Genet Newsl 30:20

    Google Scholar 

  • Tinker NA, Mather DE (1995) MQTL: Software for simplified composite interval mapping of QTL in multiple environments. J Agric Genom 1:1–24

    Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  PubMed  CAS  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11(8):405–412

    Article  PubMed  CAS  Google Scholar 

  • Ullrich SE, Hayes PM, Dyer WE, Blake TK, Clancy JA (1993) Quantitative trait locus analysis of seed dormancy in ‘Steptoe’ barley. In: Proceedings of the pre-harvest sprouting in cereals 1992, St Paul, pp 136–145

  • van Ginkel M, Calhoun DS, Gebeyehu G, Miranda A, Tian-You C, Pargas Lara R, Trethowan RM, Sayre K, Crossa J, Rajaram S (1998) Plant traits related to yield of wheat in early, late, or continuous drought conditions. Euphytica 100:109–121

    Article  Google Scholar 

  • Weltzien E (1988) Evaluation of barley (Hordeum vulgare L) landrace populations originating from different growing regions in the near east. Plant Breed 101:95–106

    Article  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996) Expression of a late embryogenesis related protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci 40:597–605

    Google Scholar 

  • Zhang F, Chen G, Huang Q, Orion O, Krugman T, Fahima T, Korol AB, Nevo E, Gutterman Y (2005) Genetic basis of barley caryopsis dormancy and seedling desiccation tolerance at the germination stage. Theor Appl Genet 110:445–453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the technical support of A. Sabbagh. The authors’ research was supported by grants to ICARDA from the German Federal Ministry of Economic Cooperation and Development (BMZ, Bonn, Germany) and the Generation Challenge Program. M.v.K. was supported by a fellowship from the Society for Technical Cooperation (Gesellschaft fuer Technische Zusammenarbeit, GTZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baum.

Additional information

Communicated by C.-C. Schön.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary tables (DOC 215 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Korff, M., Grando, S., Del Greco, A. et al. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet 117, 653–669 (2008). https://doi.org/10.1007/s00122-008-0787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0787-2

Keywords

Navigation