Skip to main content
Log in

Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Soybean [Glycine max (L.) Merr.] cultivars show differences in their resistance to both the leaf scorch and root rot of sudden death syndrome (SDS). The syndrome is caused by root colonization by Fusarium virguliforme (ex. F. solani f. sp. glycines). Root susceptibility combined with reduced leaf scorch resistance has been associated with resistance to Heterodera glycines HG Type 1.3.6.7 (race 14) of the soybean cyst nematode (SCN). In contrast, the rhg1 locus underlying resistance to Hg Type 0 was found clustered with three loci for resistance to SDS leaf scorch and one for root infection. The aims of this study were to compare the inheritance of resistance to leaf scorch and root infection in a population that segregated for resistance to SCN and to identify the underlying quantitative trait loci (QTL). “Hartwig”, a cultivar partially resistant to SDS leaf scorch, F. virguliforme root infection and SCN HG Type 1.3.6.7 was crossed with the partially susceptible cultivar “Flyer”. Ninety-two F5-derived recombinant inbred lines and 144 markers were used for map development. Four QTL found in earlier studies were confirmed. One contributed resistance to leaf scorch on linkage group (LG) C2 (Satt277; P = 0.004, R 2 = 15%). Two on LG G underlay root infection at R8 (Satt038; P = 0.0001 R 2 = 28.1%; Satt115; P = 0.003, R 2 = 12.9%). The marker Satt038 was linked to rhg1 underlying resistance to SCN Hg Type 0. The fourth QTL was on LG D2 underlying resistance to root infection at R6 (Satt574; P = 0.001, R 2 = 10%). That QTL was in an interval previously associated with resistance to both SDS leaf scorch and SCN Hg Type 1.3.6.7. The QTL showed repulsion linkage with resistance to SCN that may explain the relative susceptibility to SDS of some SCN resistant cultivars. One additional QTL was discovered on LG G underlying resistance to SDS leaf scorch measured by disease index (Satt130; P = 0.003, R 2 = 13%). The loci and markers will provide tagged alleles with which to improve the breeding of cultivars combining resistances to SDS leaf scorch, root infection and SCN HG Type 1.3.6.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achenbach L, Patrick J, Gray L (1996) Use of RAPD markers as a diagnostic tool for the identification of Fusarium solani isolates that cause soybean sudden death syndrome. Plant Dis 80:1228–1232

    Article  CAS  Google Scholar 

  • Afzal AJ, Lightfoot DA (2007) Soybean disease resistance protein RHG1-LRR domain expressed, purified and refolded from Escherichia coli inclusion bodies: preparation for a functional analysis. Protein Expr Purif 53:346–55

    Article  PubMed  CAS  Google Scholar 

  • Anand SC (1992) Registration of ‘Hartwig’ soybean. Crop Sci 32:1060–1070

    Article  Google Scholar 

  • Aoki T, O’Donnell K, Homma Y, Lattanzi AR (2003) Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex-F. virguliforme in North America and F. tucumaniae in South America. Mycologia 95:660–684

    Article  Google Scholar 

  • Baker RA, Nemec S (1994) Soybean sudden death syndrome: isolation and identification of a new phytotoxin from cultures of the causal agent, Fusarium solani (abstract). Phytopathology 84:1144

    Google Scholar 

  • Bashir R (2007) Developing markers from BAC-end sequences to improve marker assisted selection in soybean. MS thesis, SIUC, p 147

  • Basten CJ, Weir BS, Zeng Z (2001) QTL cartographer version 2.0, Raleigh. Department of Statistics, North Carolina State University, NC, USA

  • Chang SJC, Doubler TW, Kilo V, Suttner RJ, Klein JH, Schmidt ME, Gibson PT, Lightfoot DA (1996) Two additional loci underlying durable field resistance to soybean sudden-death syndrome (SDS). Crop Sci 36:1624–1628

    Article  Google Scholar 

  • Chang SJC, Doubler TW, Kilo V, Suttner RJ, Klein III JH, Schmidt ME, Gibson PT, Lightfoot DA (1997) Association of field resistance to soybean sudden death syndrome (SDS) and cyst nematode (SCN). Crop Sci 37:965–971

    Article  CAS  Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    Article  CAS  Google Scholar 

  • Covert SF, Aoki T, O’Donnell K, Starkey D, Holliday A, Geiser DM, Cheung F, Town CD, Strom A, Juba J, Scandiani M, Yang XB (2007) Sexual reproduction in the soybean sudden death syndrome pathogen Fusarium tucumaniae. Fungal Genet Biol 44:799–807

    Article  PubMed  CAS  Google Scholar 

  • Farias-Neto AF, Hashmi R, Schmidt ME, Carlson SR, Hartman GL, Li S, Nelson RL, Diers BW (2007) Mapping and confirmation of a sudden death syndrome resistance QTL on linkage group D2 from the soybean genotypes ‘PI 567374’ and ‘Ripley’. Mol Breed 20:53–62

    Article  CAS  Google Scholar 

  • Fehr W (1987) Principals of cultivar development:theory and techniques, vol 1. McMillan, New York

    Google Scholar 

  • Fehr WR, Caviness CE (1977) Stages of soybean development. Special report 80, 11. Cooperative Extension Service, Agriculture and Home Economics Exp Stn Iowa State University, Ames, Iowa, pp 929–931

  • Gibson PT, Shenaut MA, Njiti VN, Suttner RJ, Myers Jr O (1994) Soybean varietal response to sudden death syndrome. In: Wilkinson D (ed) Proc. twenty-fourth soybean seed res. conf., Chicago, IL, 6–7 December 1994. Am Seed Trade Assoc, Washington DC, pp 436–446

    Google Scholar 

  • Gray LE, Achenbach LA, Duff RJ, Lightfoot DA (1999) Pathogenicity of Fusarium solani f. sp. glycines isolates on soybean and green bean plants. J Phytopathol 147:281–284

    Article  Google Scholar 

  • Hartman GL Huang YH Nelson RL, Noel GR (1997) Germplasm evaluation of Glycine max for resistance to Fusarium solani, the causal organism of sudden death syndrome. Plant Dis 81:515–518

    Article  Google Scholar 

  • Hashmi RY (2004) Inheritance of resistance to soybean sudden death syndrome (SDS) in Ripley x Spencer F5 derived lines. Ph.D. dissertation, Plant Biology, SIUC, Carbondale, USA

  • Hnetkovsky N, Chang SJC, Doubler TW, Gibson PT, Lightfoot DA (1996) Genetic mapping of loci underlying field resistance to soybean sudden death syndrome (SDS). Crop Sci 36:393–400

    Article  CAS  Google Scholar 

  • Iqbal MJ, Meksem K, Njiti VN, Kassem My A, Lightfoot DA (2001) Microsatellite markers identity three additional quantitative trait loci for resistance to soybean sudden-death syndrome (SDS) in Essex x Forrest RILs. Theor Appl Genet 102:187–192

    Article  CAS  Google Scholar 

  • Iqbal MJ, Yaegashi S, Njiti VN, Ahsan R, Cryder KL, Lightfoot DA (2002) Resistance locus pyramids alter transcript abundance in soybean roots inoculated with Fusarium solani f.sp. glycines. Mol Genet Genomics 268:407–417

    Article  PubMed  CAS  Google Scholar 

  • Iqbal MJ, Yaegashi S, Ahsan R, Shopinski KL, Lightfoot DA (2005) Root response to Fusarium solani f. sp. glycines: temporal accumulation of transcripts in partially resistant and susceptible soybean. Theor Appl Genet 110:1429–1438

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Ji J, Scott MP, Bhattacharyya MK (2006) Light is essential for degradation of ribulose-1,5-biphosphate carboxylase-oxygenase large subunit during sudden death syndrome development in soybean. Plant Biol 8:597–605

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Hartman GL, Nickell CD, Widholm JM (1996) Characterization and purification of a phytotoxin produced by Fusarium solani, the causal agent of soybean sudden death syndrome. Phytopathology 86:277–282

    Article  CAS  Google Scholar 

  • Kassem MA, Shultz J, Meksem K, Cho Y, Wood AJ, Iqbal MJ, Lightfoot DA (2006) An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet 113:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Kazi S (2005) Minimum tile derive microsatellite markers improve the physical map of the soybean genome and the Flyer by Hartwig genetic map at Rhg, Rfs and yield loci. MS thesis SIUC Carbondale IL, USA, p 212

  • Kazi S, Njiti VN, Doubler TW, Yuan J, Iqbal MJ, Cianzio S, Lightfoot DA (2007) Registration of the Flyer by Hartwig recombinant inbred line mapping population. J Plant Regis 1:175–178

    Article  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER:An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li S, Hartman GL (2003) Molecular detection of Fusarium solani f. sp. glycines in soybean roots and soil. Plant Pathol 52:74–78

    Article  CAS  Google Scholar 

  • Lightfoot DA, Meksem K, Gibson PT (2001) Soybean Sudden Death Syndrome resistant soybeans, soybean cyst nematode resistant soybeans and methods of breeding and identifying resistant plants: DNA markers. US Patent # 6,300,541

  • Lightfoot DA, Meksem K, Gibson PT (2007) Method of determining soybean sudden death syndrome resistance in a soybean plant. US Patent #7,288,386

    Google Scholar 

  • Lightfoot DA (2008) Soybean genomics: developments through the use of cultivar forrest. Int J Plant Genom (in press)

  • Lozovaya VV, Lygin AV, Zernova OV, Li S, Hartman GL, Widholm JM (2004) Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem 42:671–679

    Article  PubMed  CAS  Google Scholar 

  • Lozovaya VV, Lygin AV, Zernova OV, Li S, Widholm JM, Hartman GL (2005) Lignin degradation by Fusarium solani f. sp. glycines. Plant Dis 90:77–82

    Article  CAS  Google Scholar 

  • McBlain BA, Fioritto RJ, St Martin SK, Calip-DuBois A, Schmitthenner AF, Cooper RL, Martin RJ (1990) Registration of ‘Flyer’ soybean. Crop Sci 30:425

    Google Scholar 

  • Meksem K, Doubler TW, Chancharoenchai K, Njiti VN, Chang SJC, Rao-Arelli AP, Cregan PE, Gray LE, Gibson PT, Lightfoot DA (1999) Clustering among loci underlying soybean resistance to Fusarium solani, SDS and SCN in near-isogenic lines. Theor Appl Genet 99:1131–1142

    Article  CAS  Google Scholar 

  • Meksem K, Pantazopoulos P, Njiti VN, Hyten DL, Arelli PR, Lightfoot DA (2001) ‘Forrest’ resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet 103:710–717

    Article  CAS  Google Scholar 

  • Mueller DS, Nelson RL, Hartman GL, Pederson WL (2003) Response of commercially developed soybean cultivars and ancestoral soybean lines to Fusarium solani f. sp. glycines, the causal organism of sudden death syndrome. Plant Dis 87:827–831

    Article  Google Scholar 

  • Niblack TL, Noel GR, Lambert KL (2003) The Illinois SCN type test: practical application of the HG Type classification system. J Nematol 35:355–345

    Google Scholar 

  • Njiti VN, Shenaut MA, Sutter RJ, Schmidt ME, Gibson PT (1996) Soybean response to soybean sudden-death syndrome: inheritance influence by cyst nematode resistance in Pyramid x Douglas progenies. Crop Sci 36:1165–1170

    Article  Google Scholar 

  • Njiti V, Gray L, Lightfoot DA (1997) Rate-reducing resistance to Fusarium solani f.sp. phaseoli [nee: glycines] underlies field resistance to soybean sudden-death syndrome (SDS). Crop Sci 37:1–12

    Article  Google Scholar 

  • Njiti VN, Doubler TW, Suttner RJ, Gray LE, Gibson PT, Lightfoot DA (1998) Resistance to soybean sudden death syndrome and root colonization by Fusarium solanif. sp. glycines in near-isogeneic lines. Crop Sci 38:472–477

    Article  Google Scholar 

  • Njiti V, Johnson JE, Torto TA, Gray LE, Lightfoot DA (2001) Inoculum rate influences selection for field resistance to soybean sudden death syndrome in the greenhouse. Crop Sci 41:1726–1731

    Article  Google Scholar 

  • Njiti VN, Meksem K, Iqbal MJ, Johnson JE, Kassem MA, Zobrist KF, Kilo VY, Lightfoot DA (2002) Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theor Appl Genet 104:294–300

    Article  PubMed  CAS  Google Scholar 

  • Njiti VN, Myers Jr O, Schroeder D, Lightfoot DA (2003) Roundup ready soybean:Glyphosate effects on Fusarium solani root colonization and sudden death syndrome. Agron J 95:1140–1145

    Article  CAS  Google Scholar 

  • Njiti VN, Lightfoot DA (2006) Genetic analysis infers Dt loci underlie resistance to SDS caused by Fusarium virguliforme in indeterminate soybeans. Can J Plant Sci 41:83–89

    Google Scholar 

  • O’Donnell K (2000) Molecular phylogeny of the Nectrai hematococcca-Fusarium solani species complex. Mycologia 92:919–938

    Article  CAS  Google Scholar 

  • Prabhu RR, Njiti VN, Johnson JE, Schmidt ME, Klein RJ, Lightfoot DA (1999) Selecting soybean cultivars for dual resistance to cyst nematode sudden death syndrome with two DNA markers. Crop Sci 39:982–987

    Article  CAS  Google Scholar 

  • Roy KW (1997) Fusarium solani on soybean roots: nomenclature of the causal agent of sudden death syndrome and identity and relevance of F. solani form B. Plant Dis 81:259–266

    Article  Google Scholar 

  • Ruben E, Aziz J, Afzal J, Njiti VN, Triwitayakorn K, Iqbal MJ, Yaegashi S, Arelli PR, Town CD, Ishihara H, Meksem K, Lightfoot DA (2006). Genomic analysis of the ‘Peking’ rhg1 locus: Candidate genes that underlie soybean resistance to the cyst nematode. Mol Genet Genome 276:320–330

    Google Scholar 

  • Sanithchon J, Vanavichit A, Chanprame S, Toojinda T, Triwitayakorn T, Njiti VM, Srinives P (2004) Identification of simple sequence repeat markers linked to sudden death syndrome resistance in soybean. Sci Asia 30:205–209

    Article  Google Scholar 

  • Schuster I, Abdelnoor RV, Marin SRR, Carvalho VP, Kiihl AS, Silva JFV, Sedyama CS, Barros EG, Moreira MA (2001) Identification of a new major QTL associated with resistance to the soybean cyst nematode (Heterodera glycines). Theor Appl Genet 102:91–96

    Article  CAS  Google Scholar 

  • Scherm H, Yang XB (1996) Development of sudden death syndrome of soybean in relation to soil temperature and soil water potential. Phytopathology 86:642–649

    Article  Google Scholar 

  • Shultz JL, Kurunam D, Shopinski K, Iqbal MJ, Kazi S, Zobrist K, Bashir R, Yaegashi S, Lavu N, Afzal AJ, Yesudas CR, Kassem MA, Wu C, Zhang HB, Town CD, Meksem K, Lightfoot DA (2006a) The soybean genome database (SoyGD): a browser for display of duplicated, polyploid, regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max. Nucleic Acids Res 34:D758–D765

    Article  PubMed  CAS  Google Scholar 

  • Shultz JL, Yesudas CR, Yaegashi S, Afzal J, Kazi S, Lightfoot DA (2006b) Three minimum tile paths from bacterial artificial chromosome libraries of the soybean (Glycine max cv. ‘Forrest’): tools for structural and functional genomics. Plant Methods 2:9–18

    Article  PubMed  CAS  Google Scholar 

  • Shultz JL, Kazi S, Afzal JA, Bashir R, Lightfoot DA (2007) The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114:1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  PubMed  CAS  Google Scholar 

  • Stephens PA, Nickell CD, Kolb FL (1993) Genetic analysis of resistance to Fusarium solani in soybean. Crop Sci 33:929–930

    Article  Google Scholar 

  • Triwitayakorn K, Njiti VN, Iqbal MJ, Yaegashi S, Town CD, Lightfoot DA (2005) Genomic analysis of a region encompassing QRfs1 and QRfs2: genes that underlie soybean resistance to sudden death syndrome. Genome/Génome 48:125–138

    Article  CAS  Google Scholar 

  • Webb, DM, Baltazar BM, Rao-Arelli AP, Schupp J, Keim P, Clayton K, Ferreira AR, Owens T, Beavis WD (1995) QTL affecting soybean cyst-nematode resistance. Theor Appl Genet 91:574–581 and United States Patent 5,491,081, Feb 16, 1996

    Google Scholar 

  • Wrather JA, Kendig SR, Anand SC, Niblack TL Smith GS (1995) Effects of tillage, cultivar, and planting date on percentage of soybean leaves with symptoms of sudden death syndrome. Plant Dis 79:560–562

    Article  Google Scholar 

  • Wrather JA, Anderson TR, Arsyad DM, Gai J, Ploper DL, Portapuglia A, Ram HH, Yorinori JT (1996) Soybean disease loss estimates for the top ten producing countries during. Plant Dis 79:107–110

    Google Scholar 

  • Wrather JA, Koenning SR, Anderson TR (2003) Effect of diseases on soybean yields in the United States and Ontario (1999 to 2002). Plant Health Progr (online doi:10.1049)

  • Yuan J, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA, Davis GT, Schmidt ME, Lightfoot DA (2002) Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci 42:271–277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded over the past 11 years in part by grants from the NSF 9872635, ISA 95-122-04; 98-122-02 and 02-127-03 and USB 2228-6228. The integrated genetic and physical map was based upon work supported by the National Science Foundation under Grant No. 9872635. Any opinions, findings, and conclusions or recommendations expressed in this material were those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The continued support of SIUC, College of Agriculture and Office of the Vice Chancellor for Research to SK, JA and DAL was appreciated. The authors thank Dr. P. Gibson, O Myers Jr. and M. Schmidt for assistance with germplasm development and maintenance from 1991 to 2000 and Dr. Rizwan Hashmi for assistance with data analysis and interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Lightfoot.

Additional information

Communicated by I. Rajcan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1:

Correlation between leaf scorch measured as mean DX at the R6 and root infection measured as IS at the R8. Among the metrics used to measure leaf and root SDS these two showed the closest correlation. The data was from different years. Only lines with IS scores are shown. The correlation was significant P<0.05 with 49 df (DOC 23 kb)

Supplementary Figure 2

. Gbrowse representation of the MTP clones in a portion of the soybean genome showing build 4 linkage group G from 1 to 10 Mbp encompassing cqRfs1, cqRfs2, qRfs3 and rhg1 (cqSCN-001) closely linked to Satt309. A 10 Mbp region with loci, QTL, clones, contigs, sequences and gene models was shown. Loci, or genetic map DNA markers, were shown as red arrow heads. QTL in the region were shown as blue bars. BAC clones were shown as the coalesced purple bar. Contigs were shown as green bars. Polyploid region contigs have ctg numbers greater than 8,000. Sequences from MTP BAC ends were shown as black lines. Related gene annotations were shown as purple lines (the 5 most probable Blastx hits at P < e-5 were listed). ESTs mapped to MTP BACs were shown as golden bars and annotated with master plate address and gene model (if known) below the bar and EST name above the bar. Clicking on EST or MTP clones would bring up the gene index number. MTP4 clones were annotated below the bar with MTP and the MTP plate address. MTP2 clones can be identified as they have BES and EST hits shown. BES-SSR markers were shown as green lines below the MTP clones at (http://soybeangenome.siu.edu/cgi-bin/gbrowse/soybeanv4) (DOC 68 kb)

Supplementary tables (DOC 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazi, S., Shultz, J., Afzal, J. et al. Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome. Theor Appl Genet 116, 967–977 (2008). https://doi.org/10.1007/s00122-008-0728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0728-0

Keywords

Navigation