Skip to main content
Log in

Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Mapping quantitative trait loci (QTL) in plants is usually conducted using a population derived from a cross between two inbred lines. The power of such QTL detection and the estimation of the effects highly depend on the choice of the two parental lines. Thus, the QTL found represent only a small part of the genetic architecture and can be of limited economical interest in marker-assisted selection. On the other hand, applied breeding programmes evaluate large numbers of progeny derived from multiple-related crosses for a wide range of agronomic traits. It is assumed that the development of statistical techniques to deal with pedigrees in existing plant populations would increase the relevance and cost effectiveness of QTL mapping in a breeding context. In this study, we applied a two-step IBD-based-variance component method to a real wheat breeding population, composed of 374 F6 lines derived from 80 different parents. Two bread wheat quality related traits were analysed by the method. Results obtained show very close agreement with major genes and QTL already known for those two traits. With this new QTL mapping strategy, inferences about QTL can be drawn across the breeding programme rather than being limited to the sample of progeny from a single cross and thus the use of the detected QTL in assisting breeding would be facilitated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almasy L, Blangero J (1998) Multipoint quantitative trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  PubMed  CAS  Google Scholar 

  • American Association of Cereals Chemists (1995) Approved methods of the American association of cereal chemists, 9th edn. The American Association of Cereals Chemists, Saint Paul, MN

    Google Scholar 

  • Beavis WD (1998) QTL analysis: power, precision and accuracy. In: Paterson AH (ed) Molecular analysis of complex traits. CRC Press, Boca Raton, FL, pp 145–161

    Google Scholar 

  • Bernardo R (1993) Estimation of coefficient of coancestry using molecular markers in maize. Theor Appl Genet 85:1055–1062

    Article  CAS  Google Scholar 

  • Bernardo R (1998) Predicting the performance of untested single crosses: trait and marker data. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. Publ 25, Crop Science Society of America, Madison, Wis, pp 117–127

    Google Scholar 

  • Bettge AD, Morris CF (2000) Relationships among grain hardness, pentosan fractions, and end-use quality of wheat. Cereal Chem 77:241–247

    Article  CAS  Google Scholar 

  • Bink MCAM, Uimari P, Sillanpää M, Janss L, Jansen R (2002) Multiple QTL mapping in related plant populations via a pedigree-analysis approach. Theor Appl Genet 104:751–762

    Article  PubMed  CAS  Google Scholar 

  • Branlard G, Dardevet M (1985) Diversity of grain protein and bread quality. II. Correlation between high molecular weight subunits of glutenin and flour characteristics. J Cereal Sci 3:345–354

    Article  CAS  Google Scholar 

  • Branlard G, Dardevet M, Saccomano R, Lagoutte F, Gourdon J (2001) Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica 119:59–67

    Article  CAS  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft x hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Chakraborty R, Moreau L, Dekkers JCM (2002) A general method to optimize selection on multiple identified trait loci. Gen Sel Evol 34:145–170

    Article  CAS  Google Scholar 

  • Charmet G, Groos C (2002) QTL in bread-making. In: Molecular techniques in crop improvement. Kluwer Academic Publishers, Hingham, MA, pp 601–616

  • Crepieux S, Lebreton C, Servin B, Charmet G (2004a) QTL detection in multi-cross inbred designs: recovering QTL-IBD status information from marker data. Genetics 168:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Crepieux S, Lebreton C, Servin B, Charmet G (2004b) IBD-based QTL detection in inbred pedigrees: a case study of cereal breeding programs. Euphytica 137:101–109

    Article  CAS  Google Scholar 

  • Fernando RL, Grossman M (1989) Marker assisted selection using best linear unbiased prediction. Gen Sel Evol 21:467–477

    Article  Google Scholar 

  • George AW, Visscher PM, Haley CS (2000) Mapping quantitative trait in complex pedigrees: a two-step variance component approach. Genetics 156:2081–2092

    PubMed  CAS  Google Scholar 

  • Gilmour AR, Cullis BR, Welham SJ, Thompson R (1998) ASREML program user manual. Ed. Orange Agricultural Institute, New South Wales, Australia

    Google Scholar 

  • Giroux M, Morris C (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci 95:6262–6266

    Article  PubMed  CAS  Google Scholar 

  • Groos C, Bervas E, Charmet G (2004) Genetic analysis of grain protein content, grain hardness and dough rheology in a hard x hard bread wheat progeny. J Cereal Sci 40:93–100

    Article  CAS  Google Scholar 

  • Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2:3–19

    Article  PubMed  CAS  Google Scholar 

  • Jannink J-L, Bink MCAM, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6:337–342

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC (2001) Quantitative trait loci in inbred lines. In: Balding DJ, et al. (ed) Handbook of statistical genetics. Wiley, New York, pp 567–597

    Google Scholar 

  • Jansen RC, Jannink J-L, Beavis WD (2003) Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing. Crop Sci 43:829–834

    Article  CAS  Google Scholar 

  • Joffre M, Crepieux S (2004) PurPL: a software for marker correction on multi-cross designs made of pure lines. Mol Ecol Notes 4:789–791

    Article  Google Scholar 

  • Knott SA, Elsen J-M, Haley CS (1996) Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor Appl Genet 93:71–80

    Article  Google Scholar 

  • Lander E, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Law CN, Snape JW, Worland AJ (1978) The genetical relationship between height and yield in wheat. Heredity 40:133–151

    Google Scholar 

  • Lillemo M, Morris CF (2000) A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theor Appl Genet 100:1100–1107

    Article  CAS  Google Scholar 

  • Lund MS, Sorensen P, Guldbransten B, Sorensen DA (2003) Multitrait fine mapping of quantitative trait loci using combined linkage disequilibria and linkage analysis. Genetics 163:405–410

    PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • MacRitchie F (1999) Wheat proteins: characterization and role in flour functionality. Cereal Foods World 44:188–193

    CAS  Google Scholar 

  • Mattern PJ, Morris R, Schmidt JW, Johnson VA (1973) Locations of genes for kernel properties in the wheat variety “Cheyenne” using chromosome substitution lines. In: Proceedings of 4th international wheat genetic symposium, Colombus, Missouri, pp 703–707

  • Muranty H (1996) Power of tests for quantitative trait loci detection using full-sib families in different schemes. Heredity 76:156–165

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variations in terms of restriction endonucleases. Proc Natl Acad Sci 76:5369–5373

    Article  Google Scholar 

  • Parisseaux B, Bernardo R (2004) In silico mapping of quantitative trait loci in Maize. Theor Appl Genet 109:508–514

    Article  PubMed  CAS  Google Scholar 

  • Perretant M, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    Article  CAS  Google Scholar 

  • Robert N, Denis JB (1996) Stability of baking quality in bread wheat using several statistical parameters. Theor Appl Genet 93:172–178

    Article  Google Scholar 

  • Röder M, Korzun V, Wendehake K, Plaschke J, Tixier M, Leroy P, Ganal M (1998) A microsatellite map of the wheat genome. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    Article  PubMed  CAS  Google Scholar 

  • Servin B, Dillmann C, Decoux G, Hospital F (2002) MDM: a program to compute fully informative genotype frequencies in complex breeding schemes. J Hered 93:227–228

    Article  PubMed  CAS  Google Scholar 

  • Slate J, Visscher PM, MacGregor S, Stevens D, Tate ML, Pemberton JM (2002) A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus). Genetics 162:1863–1873

    PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape J, Perretant M, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    CAS  Google Scholar 

  • Symes KJ (1965) The inheritance of grain hardness in wheat as measured by the particle size index. Aust J Agr Res 16:113–123

    Article  Google Scholar 

  • Xie C, Gessler DDG, Xu S (1998) Combining different line crosses for mapping quantitative trait loci using the identical by descent-based variance component method. Genetics 149:1139–1146

    PubMed  CAS  Google Scholar 

  • Xu S (1998) Mapping quantitative trait loci using multiple families of line crosses. Genetics 148:517–524

    PubMed  CAS  Google Scholar 

  • Xu S, Atchley WR (1995) A random model approach to interval mapping of quantitative trait loci. Genetics 141:1189–1197

    PubMed  CAS  Google Scholar 

  • Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M (2001) Genetic analysis of bread-making quality in wheat and spelt. Plant Breed 120:13–19

    Article  CAS  Google Scholar 

  • Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang Q, Boichard D, Hoeschele I, Ernst C, Eggen A, Murkve B, Pfister-Genskow M, Witte LA, Grignola FE, Uimari P, Thaller G, Bishop MD (1998) Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree. Genetics 149:1959–1973

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the two reviewers for helpful comments on the manuscript, notably for the description of the ‘disruptive selection’. They are grateful to B. Duperrier, J. B. Beaufume, and J. Stragliatti for providing the wheat breeding material and to E. Chanliaud and F. X. Oury for providing the quantitative traits. They are also grateful to M. Joffre and B. Servin for software development. Microsatellites data were produced on the INRA Clermont-Ferrand genotyping platform. This research was supported by the Ministère de l’Economie, des Finances et de l’Industrie (ASG Program No. 01 04 90 6058) and by the “Food Quality” programme, jointly founded by the INRA, the Auvergne Region and the French ministries of Research and of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Crepieux.

Additional information

Communicated by A. Charcosset

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crepieux, S., Lebreton, C., Flament, P. et al. Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength. Theor Appl Genet 111, 1409–1419 (2005). https://doi.org/10.1007/s00122-005-0073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0073-5

Keywords

Navigation