Skip to main content
Log in

Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Mapping of genes that play major roles in cotton fiber development is an important step toward their cloning and manipulation, and provides a test of their relationships (if any) to agriculturally-important QTLs. Seven previously identified fiber mutants, four dominant (Li 1, Li 2, N 1 and Fbl) and three recessive (n 2, sma-4(h a), and sma-4(fz)), were genetically mapped in six F2 populations comprising 124 or more plants each. For those mutants previously assigned to chromosomes by using aneuploids or by linkage to other morphological markers, all map locations were concordant except n 2, which mapped to the homoeolog of the chromosome previously reported. Three mutations with primary effects on fuzz fibers (N 1, Fbl, n 2) mapped near the likelihood peaks for QTLs that affected lint fiber productivity in the same populations, perhaps suggesting pleiotropic effects on both fiber types. However, only Li 1 mapped within the likelihood interval for 191 previously detected lint fiber QTLs discovered in non-mutant crosses, suggesting that these mutations may occur in genes that played early roles in cotton fiber evolution, and for which new allelic variants are quickly eliminated from improved germplasm. A close positional association between sma-4(h a ), two leaf and stem-borne trichome mutants (t 1 , t 2), and a gene previously implicated in fiber development, sucrose synthase, raises questions about the possibility that these genes may be functionally related. Increasing knowledge of the correspondence of the cotton and Arabidopsis genomes provides several avenues by which genetic dissection of cotton fiber development may be accelerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Applequist WL, Cronn R, Wendel JF (2001) Comparative development of fiber in wild and cultivated cotton. Evol Dev 3:3–17

    Article  PubMed  CAS  Google Scholar 

  • Arpat A, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing R, Wilkins T (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Bio 54:911–929

    Article  PubMed  CAS  Google Scholar 

  • Basra AS, Malik CP (1984) Development of the cotton fiber. Int Rev Cytol 89:65–113

    CAS  Google Scholar 

  • Beasley CA, Egli E (1977) Fiber production in vitro from a conditional fiberless mutant of cotton. Dev Biol 57:234–237

    Article  PubMed  CAS  Google Scholar 

  • Benton MJ (1993) The fossil record 2. Chapman and Hall, New York

    Google Scholar 

  • Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  ADS  CAS  Google Scholar 

  • Chee P, Draye X, Jiang C, Decanini L, Delmonte T, Bredhauer B, Smith CW, Paterson H (2005a) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet (in press)

  • Chee P, Draye X, Jiang C, Decanini L, Delmonte T, Bredhauer B, Smith CW, Paterson H (2005b) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet (in press)

  • Cronn RC, Small RL, Haselkorn T, Wendel JF (2002) Rapid diversification of the cotton genus (Gossypium : Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot 89:707–725

    CAS  Google Scholar 

  • Draye X, Chee P, Jiang C, Decanini L, Delmonte T, Bredhauer B, Smith CW, Paterson H (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Conditionally accepted, pending revision. Theor Appl Genet (in press)

  • Endrizzi JE, Ramsay G (1980) Identification of ten chromosome deficiencies in cotton. J Hered 71:45–48

    Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytogenetics, and evolution of Gossypium. Adv Genet 23

  • Fryxell PA (1963) Morphology of the base of seed hairs of Gossypium. Bot Gaz 124:196–199

    Article  Google Scholar 

  • Fryxell P (1979) The Natural History of the Cotton Tribe. Texas A&M University Press, College Station, TX

    Google Scholar 

  • Griffee F, Ligon LL (1929) Occurrence of lintless cotton plants and the inheritance of the character ’lintless.’ J Amer Soc Agron 21:711–717

    Google Scholar 

  • Han ZG, Guo WZ, Song XL, Zhang TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Gen Genet 272:308–327

    CAS  Google Scholar 

  • Jiang CX, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424

    Article  PubMed  ADS  CAS  Google Scholar 

  • Karaca M, Saha S, Jenkins JN, Zipf A, Kohel R, Stelly DM (2002) Simple Sequence Repeat (SSR) Markers Linked to the Ligon Lintless (Li1) Mutant in Cotton. J Hered 93:221–224

    Article  PubMed  CAS  Google Scholar 

  • Kearney TH, Harrison GJ (1927) Inheritance of smooth seeds in cotton. J Agr Res 35:193–217

    Google Scholar 

  • Kloth R (1995) Quantitative trait loci affecting cotton fiber are linked to the T(1) locus in upland cotton. Theor Appl Genet 91:762–768

    Google Scholar 

  • Knight RL (1952) The genetics of jassid resistance in cotton. I. The genes H 1 and H 2. J Genet 51:46–66

    Google Scholar 

  • Kohel RJ (1979) Gene arrangement in the duplicate linkage group V anf IX: Nectariless, glandless, and withering bract in cotton (Gossypium hirsutum L.). Crop Sci 19:831–833

    Article  Google Scholar 

  • Kohel RJ, Narbuth EV, Benedict CR (1992) Fiber development of Ligon lintless-2 mutant of cotton. Crop Sci 32:733–735

    Article  Google Scholar 

  • Kohel RJ, Stelly DM, Yu J (2002) Tests of six cotton (Gossypium hirsutum L.) mutants for association with aneuploids. J Hered 93:130–132

    Article  PubMed  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population. Genome 46:612–626

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian Factors Underlying Quantitative Traits Using Rflp Linkage Maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Larkin JC, Brown ML, Schiefelbein J (2003) How do cells know what they want to be when they grow up? Lessons from Epidermal Patterning in Arabidopsis. Annual Review of Plant Biology 54:403–430

    Article  PubMed  CAS  Google Scholar 

  • Loguercio LL, Scott HC, Trolinder NL, Wilkins TA (1999) Hmg-co-A reductase gene family in cotton (Gossypium hirsutum L.): Unique structural features and differential expression of hmg2 are potentially associated with synthesis of specific isoprenoids in developing embryos. Plant Cell Physiol 40:750–761

    PubMed  CAS  Google Scholar 

  • Moulherat C, Tengberg M, Haquet JF, Mille B (2002) First evidence of cotton at Neolithic Mehrgarh, Pakistan: Analysis of mineralized fibres from a copper bead. J Archaeol Sci 29:1393–1401

    Article  Google Scholar 

  • Narbuth EV, Kohel RJ (1990) Interitance and linkage analysis of a new fiber mutant in cotton. J Hered 81:131–133

    Google Scholar 

  • Oh KC, Hardeman K, Ivanchenko MG, Ellard-Ivey M, Nebenführ A, TJ White TJ, Lomax TL (2002) Fine mapping in tomato using microsynteny with the Arabidopsis genome: the Diageotropica (Dgt) locus. Genome Biol 3: research0049.0041–0049.0011

    Google Scholar 

  • Paterson A, Lin Y-R, Li Z (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    PubMed  ADS  CAS  Google Scholar 

  • Paterson AH, Lan TH, Reischmann KP, Chang C, Lin YR, Liu SC, Burow MD, Kowalski SP, Katsar CS, DelMonte TA, Feldmann KA, Schertz KF, Wendel JF (1996) Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nat Genet 14:380–382

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ (2003) QTL analysis of genotype x environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396

    PubMed  CAS  Google Scholar 

  • Percy RG, Kohel RJ (1999) Qualitative Genetics. In: Smith CW, Cothren JT (eds) Cotton: Origin, History, Technology, and Production. John Wiley & Sons, pp 319–360

  • Reinisch A, Dong J-M, Brubaker C, Stelly D, Wendel J, Paterson A (1994) A detailed RFLP map of cotton (Gossypium hirsutum x G. barbadense): Chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847

    PubMed  CAS  Google Scholar 

  • Rong J-K, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding XL, Garza JJ, Marler BS, Park C-H, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    Article  PubMed  CAS  Google Scholar 

  • Rong J-K, Bowers JE, Schulze SR, Waghmare VN, Rogers CJ, Pierce GJ, Zhang H, Estill JC, Paterson AH (2005) Comparative Genomics of Gossypium and Arabidopsis: Unraveling the Consequences of both Ancient and Recent Polyploidy. Genome Res (in press)

  • Ruan Y-L, Gilmore L, Conner T (1998) Towards Arabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays. Plant J 15:821–833

    Article  PubMed  CAS  Google Scholar 

  • Ruan Y-L, Llewellyn DJ, Furbank RT (2003) Suppression of Sucrose Synthase Gene Expression Represses Cotton Fiber Cell Initiation, Elongation, and Seed Development. Plant Cell 15:952–964

    Article  PubMed  CAS  Google Scholar 

  • Saranga Y, Menz M, Jiang CX, Wright RJ, Yakir D, Paterson AH (2001) Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. Genome Res 11:1988–1995

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Current Opinion in Plant Biology 6:74–78

    Article  PubMed  CAS  Google Scholar 

  • Silow RA (1941) The comparative genetics of Gossypium anomalum and the cultivated Asiatic cottons. J Genet 42:259–358

    Article  Google Scholar 

  • Simpson DM (1947) Fuzzy leaf in cotton and its association with short lint. J Hered 38:153–156

    Google Scholar 

  • Turley RB, Ferguson DL (1996) Changes of ovule proteins during early fiber development in a normal and a fiberless line of cotton (Gossypium hirsutum L). J Plant Physiol 149:695–702

    CAS  Google Scholar 

  • Wang XD, Zhu YX, Ji DF, Jiang SL, Li YY (2001) Cloning of fiber-specific cDNAs and their structural variations in 4 fiber mutants. Chinese Science Bulletin 46:234–237

    Article  CAS  Google Scholar 

  • Wendel JF (1989) New World Tetraploid Cottons Contain Old-World Cytoplasm. Proc Natl Acad Sci USA 86:4132–4136

    PubMed  ADS  CAS  Google Scholar 

  • Wilkins TA, Arpat A (2005) The cotton fiber transcriptome. Physiol Plantarum: in press

  • Wilkins TA, Jernstedt JA (1999) Molecular genetics of developing cotton fibers. In: Basra AS (eds) Cotton Fibers. Haworth Press, New York, pp 231–267

    Google Scholar 

  • Wilkins TA, Arpat A, Sickler BA (2005) Cotton fiber genomics: developmental mechanisms. Pflanzenschutz-Nachricten 58:119–139

    Google Scholar 

  • Wright RJ, Thaxton PM, El-Zik KH, Paterson AH (1999) Molecular mapping of genes affecting pubescence of cotton. J Hered 90:215–219

    Article  CAS  Google Scholar 

  • Zhang T, Yuan Y, Yu J, Guo W, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet 106:262–268

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Paterson lab for many valuable contributions, and the US National Science Foundation (J.F.W., T.A.W., A.H.P.), USDA National Research Initiative (J.F.W., A.H.P.), and BOYSCAST program of the DST, India (V.N.W.) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Paterson.

Additional information

Communicated by F. Salamini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rong, J., Pierce, G.J., Waghmare, V.N. et al. Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. Theor Appl Genet 111, 1137–1146 (2005). https://doi.org/10.1007/s00122-005-0041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0041-0

Keywords

Navigation