Skip to main content
Log in

Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Switchgrass is a large, North American, perennial grass that is being evaluated as a potential energy crop. Expressed sequence tags (ESTs) were generated from four switchgrass cv. “Kanlow” cDNA libraries to create a gene inventory of 7,810 unique gene clusters from a total of 11,990 individual sequences. Blast similarity searches to SwissProt and GenBank non-redundant protein and nucleotide databases were performed and a total of 79% of these unique clusters were found to be similar to existing protein or nucleotide sequences. Tentative functional classification of 61% of the sequences was possible by association with appropriate gene ontology descriptors. Significant differential representation between genes in leaf, stem, crown, and callus libraries was observed for many highly expressed genes The unique gene clusters were screened for the presence of short tandem repeats for further development as microsatellite markers. A total of 334 gene clusters contained repeats representing 3.8% of the ESTs queried.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams M, Kelley J, Gocayne J, Dubnick M, Polymeropoulos M, Xiao H, Merril C, Wu A, Olde B, Moreno R et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, W M, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochem 61:221–294

    Article  CAS  Google Scholar 

  • Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2004) UniProt: the universal protein knowledge base. Nucleic Acids Res 32:D115–D119

    Article  PubMed  CAS  Google Scholar 

  • Barnett FL, Carver RF (1967) Meiosis and pollen stainability in switchgrass, Panicum virgatum L. Crop Sci 7:301–304

    Article  Google Scholar 

  • Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D (2004) A microsatellite map of white clover. Theor Appl Genet 109:596–608

    PubMed  CAS  Google Scholar 

  • Bennetzen J, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–133

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Ann Rev of Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  Google Scholar 

  • Chakraborty R, Kimmel M, Strivers D, Davison L, Deka R (1997) Relative mutation rates at di- tri- and tetranucleotide microsatellite loci. Proc Natl Acad Sci USA 94:1041–1046

    Article  PubMed  CAS  Google Scholar 

  • Chin E, Senior M, Shu H, JSC S (1996) Maize simple repetitive DNA sequences: abundance and allele variation. Genome 39:866–873

    PubMed  CAS  Google Scholar 

  • Cho Y, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch S, Park W, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Devos K, Gale M (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Gunter LE, Tuskan GA, Wullschleger SD (1996) Diversity among populations of switchgrass based on RAPD markers. Crop Sci 36:1017–1022

    Article  Google Scholar 

  • Hultquist S, Vogel KP, Lee D, Arumuganathan K, Kaeppler S (1996) Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci 36:1049–1052

    Article  Google Scholar 

  • Jurka J, Pethiyagoda C (1995) Simple repetitive DNA sequences from primates: compilation and analysis. J Mol Evol 40:120–126

    Article  PubMed  CAS  Google Scholar 

  • Kantety R, La Rota M, Matthews D, Sorrells M (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  PubMed  CAS  Google Scholar 

  • Kellogg E (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Lazo GR et al (2004) Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.): EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map. Genetics 168:585–593

    Article  PubMed  Google Scholar 

  • Lerner DR, Raikhel NV (1989) Cloning and characterization of root-specific barley lectin. Plant Physiol 91:124–129

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14:317–324

    Article  CAS  Google Scholar 

  • Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF (1991) Describing and quantifying growth stages of perennial forage grasses. Agron J 83:1073–1077

    Article  Google Scholar 

  • Moser LE, Vogel KP (1995) Switchgrass, big bluestem, and indiangrass. In: Barnes RF, Miller DA, Nelson CJ (eds) An introduction to grassland agriculture, chapter 32. Iowa State University Press, Ames, pp 409–420

    Google Scholar 

  • Picoult-Newberg L, Ideker T, Pohl M, Taylor S, Donaldson M, Nickerson D, Boyce-Jacino M (1999) Mining SNPs from EST databases. Genome Res 9:167–174

    PubMed  CAS  Google Scholar 

  • Richards HA, Rudas VA, Sun H, McDaniel JK, Tomaszewski Z, Conger BV (2001) Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep 20:48–54

    Article  CAS  Google Scholar 

  • Saha M, Mian M, Eujayl I, Zwonitzer J, Wang L, May G (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087

    Article  CAS  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Vogel KP, Haskins FA, Gorz HJ, Anderson BA, Ward JK (1991) Registration of “Trailblazer” switchgrass. Crop Sci 31:1388

    Article  Google Scholar 

  • Vogel KP, Hopkins AA, Moore KJ, Johnson KD, Carlson IT (1996) Registration of “Shawnee” switchgrass. Crop Sci 36:1713

    Article  Google Scholar 

  • Weber J (1990) Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7:524–530

    Article  PubMed  CAS  Google Scholar 

  • Wu X-L, Griffin K, Garcia M, Michal J, Xiao Q, Wright R, Jiang Z (2004) Census of orthologous genes and self-organizing maps of biologically relevant transcriptional patterns in chickens (Gallus gallus). Gene 340:213–225

    Article  PubMed  CAS  Google Scholar 

  • Yu J, La Rota M, Kantety R, Sorrells M (2004) EST derived SSR markers for comparative mapping in wheat and rice. Mol Genet Genomics 271:742–751

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the United States Department of Agriculture, Agricultural Research Service CRIS 5325-21000-013-00, NP307 Biofuel and Bioenergy Alternatives. This work was also supported in part by NIH Grant P20 RR16569 from the BRIN Program of the National Center for Research Resources, and by a University of Nebraska at Kearney Research Services Council grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Tobias.

Additional information

Communicated by T. Lübberstedt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobias, C.M., Twigg, P., Hayden, D.M. et al. Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor Appl Genet 111, 956–964 (2005). https://doi.org/10.1007/s00122-005-0030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0030-3

Keywords

Navigation