Skip to main content
Log in

Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The occurrence of DNA modification is an undesired phenomenon accompanying plant cell transformation. The event has been correlated with the stress imposed by the presently utilised transformation procedures, all depending on plant differentiation from in vitro cell culture, but other causes have not been excluded. In this work, transgenic Arabidopsis thaliana plants have been produced by an approach that does not require cell dedifferentiation, being based on in planta Agrobacterium-mediated gene transfer by flower infiltration, which is followed by recovery and selection of transgenic progeny. Genomic DNA changes in transgenic and control plants have been investigated by AFLP and RAMP analysis. Results show no statistically relevant genomic modifications in transgenic plants, as compared with control untreated plants. Variations were observed in callus-derived A. thaliana plants, thus supporting the conclusion that somaclonal variation is essentially correlated with the stress imposed by the in vitro cell culture, rather than with the integration of a foreign gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e

Similar content being viewed by others

References

  • Arencibia A, Gentinetta E, Cuzzoni E, Castiglione S, Kohli A, Vain P, Leech M, Christou P, Sala F (1998) Molecular analysis of the genome of transgenic rice (Oryza sativa L.) plants produced via particle bombardment or intact cell electroporation. Mol Breed 4:99–109

    Article  CAS  Google Scholar 

  • Arencibia A, Carmona ER, Cornide MT, Castiglione S, O’relly J, Chinea A, Oramai P, Sala F (1999) Somaclonal variation in insect-resistance transgenic sugarcane (Saccharum hibrid) plants produced by cell electroporation. Transgenic Res 8:349–360

    Article  CAS  Google Scholar 

  • Bao PH, Castiglione S, Giordani CL, Wang W, Datta SK, Datta K, Potrykus I, Sala F (1993) State of the foreign gene and of the genome in transgenic rice (Oryza sativa L.). Cytotechnology 11:123–125

    Google Scholar 

  • Barakat A, Gallois P, Raynal M, Mestre-Ortega D, Sallaud C, Guiderdoni E, Delseny M, Bernardi G (2000) The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett 471:161–164

    Article  CAS  PubMed  Google Scholar 

  • Beaujean A, Sangwan RS, Lecardonnel A, Sangwan-Norreel BS (1998) Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation. J Exp Bot 49:1589–1595

    Article  CAS  Google Scholar 

  • Bechtold N, Ellis J, Pellettier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci 316:1194–1199

    CAS  Google Scholar 

  • Bechtold N, Jaudeau B, Jolivet S, Maba B, Vezon D, Voisin R, Pelletier G (2000) The maternal chromosome set is the target of the T-DNA in the in Planta transformation of Arabidopsis thaliana. Genetics 155:1875–1887

    CAS  PubMed  Google Scholar 

  • Bered F, Barbosa Neto JF, Rocha BM, da Carvalho FIF (2002) Genetic variability in wheat (Triticum aestivum L.) germplasm revealed by RAPD markers. Crop Breed Appl Biotechnol 2:499–505

    Google Scholar 

  • Bregitzer P, Halbert SE, Lemaux PG (1998) Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet 96:421–425

    Article  Google Scholar 

  • Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, DeRose R, Pelletier G, Lepiniec L, Caboche M, Lecharny A (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3:1152–1157

    Article  CAS  PubMed  Google Scholar 

  • Castle LA, Errampalli D, Atherton TL, Frunzmann CH, Yoon ES, Mainke DW (1993) Genetic and molecular characterisation of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 241:504–514

    CAS  PubMed  Google Scholar 

  • Cervera M, Pina JA, Juarez J, Navarro L, Pena L (2000) A broad exploration of a transgenic population of citrus: stability of gene expression and phenotype. Theor Appl Genet 100:670–677

    Article  CAS  Google Scholar 

  • Clough SJ, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cullis CA (1990) DNA rearrangements in response to environmental stress. Adv Genet 28:73–97

    CAS  Google Scholar 

  • Cullis CA, Cleary W (1986) DNA variationin flax tissue culture. Can J Genet Cytol 28:247–251

    CAS  Google Scholar 

  • Cullis CA, Kolodynska K (1975) Variation in the isozymes of flax (Linum usitatissimum) genotrophs. Biochem Genet 13:687–697

    CAS  PubMed  Google Scholar 

  • Curtis IS, Nam HG (2000) Transgenic radish (Raphanus sativus L. Longipinnatus Bailey) by floral-dip method—plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res 10:363–371

    Article  Google Scholar 

  • Dale PJ, McPartlan HC (1992) Field performance of transgenic potato plants compared with controls regenerated from tuber discs and shoot cuttings. Theor Appl Genet 84:585–591

    Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip Method. Plant Physiol 123:895–904

    Article  CAS  PubMed  Google Scholar 

  • Dolezel J, Novak FJ (1984) Effect of plant tissue culture media on the frequency of somatic mutations in Tradescantia stamen hairs. Z Pflanzenphysiol 114:51–58

    CAS  Google Scholar 

  • Etienne H, Bertrand B (2003) Somaclonal variation in Coffea arabica: effects of genotype and embryogenic cell suspension age on frequency and phenotype of variants. Tree Physiol 23:419–426

    CAS  PubMed  Google Scholar 

  • Gaj MD, Maluszynski M (1987) Genetic variation in callus culture of Arabidopsis thaliana (L.) Heynh. Arabidopsis Inf Serv 23:1–8

    Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Plant Mol Biol 51:223–256

    Article  CAS  Google Scholar 

  • Jong-Seong J, Sichul L, Ki-Hong J, Sung-Hoon J, Dong-Hoon J, Jinwon L, Chanhong K, Seonghoe J, Shinyoung L, Kiyoung Y, Jongmin N, Kyungsook A, Min-Jung H, Ryo-Jin S, Hyun-Sook C, Jung-Hwa Y, Jung-Hwan C, Se-Yu C, Sang-Su C, Shi-In K, Gynheung A (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Karp A (1991) On the current understanding of somaclonal variation. Oxf Surv Plant Mol Cell Biol 7:1–58

    Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    CAS  PubMed  Google Scholar 

  • Koncz C, Nèmeth K, Rèdei GP, Schell J (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol 20:963–976

    CAS  PubMed  Google Scholar 

  • Labra M, Savini C, Bracale M, Pelucchi N, Colombo L, Bardini M, Sala F (2001) Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens. Plant Cell Rep 20:325–330

    Article  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Google Scholar 

  • Lawrence RJ, Pikaard CS (2003) Transgene-induced RNA interference: a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations. Plant J 36:114–121

    Google Scholar 

  • Márton L, Hrounda M, Pécsváradi A, Czakó M (1994) T-DNA-insert-independent mutations induced in transformed plant cells during Agrobacterium co-cultivation. Transgenic Res 3:317–325

    PubMed  Google Scholar 

  • Miyashita NT, Kawabe A, Innan H (1999) DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis. Genetics 152:1723–1731

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Palilov AI, Khotyleva LV, Savchenko AP, Korpusenko LI, Anokhina TA, Polkanova TP, Danilov AS (1981) Polymorphism of plants in degree of cross pollination. Its biological importance, genetic basis and practical use. Nauka i tekhnika, Minsk

    Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA 91:5222–5226

    Google Scholar 

  • Polanco C, Ruiz ML (2002) AFLP analysis of somaclonal variation in Arabidopsis thaliana regenerated plants. Plant Sci 162:817–824

    Article  CAS  Google Scholar 

  • Pooran C, Singh SP (2003) Genetic diversity maintenance of cross pollinated germplasm. Prog Agric 3:1–7

    Google Scholar 

  • Pradeep T, Sumalini K (2003) Impact of mating systems on genetic variability in segregating generations of Asiatic cotton (Gossypium sp.). Indian J Genet Plant Breed 63:143–147

    Google Scholar 

  • Sachs ES, Benedict JH, Stelly DM, Taylor JF, Altman DW, Berberich SA, Davis SK (1998) Expression and segregation of genes encoding cryIA insecticidal proteins in cotton. Crop Sci 38:1–11

    CAS  Google Scholar 

  • Sala F, Arencibia A, Castiglione S, Yifan H, Labra M, Savini C, Bracale M, Pelucchi N (2000) Somaclonal variation in transgenic plants. Acta Hortic 530:411–419

    Google Scholar 

  • Sebastiani L. Lenzi A, Pugliesi C, Fambrini M (1994) Somaclonal variation for resistance to Verticillum dahliae in potato (Solanum tuberosum L.) plants regenerated from callus. Euphytica 80:5–11

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Soniya EV, Banerjee NS, Das MR (2001) Genetic analysis of somaclonal variation among callus-derived plants of tomato. Curr Sci 80:1213–1215

    CAS  Google Scholar 

  • Szabados L, Kovacs I, Oberschall A, Ábrahám E, Kerekes I, Zsigmond L, Nagy R, Alvarado M, Krasovskaja I, Gál M, Berente A, Rédei GP, Ben Haim A, Koncz C (2002) Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32:233–242

    Article  CAS  PubMed  Google Scholar 

  • Tague BW (2001) Germ-line transformation of Arabidopsis lasiocarpa. Transgenic Res 10:259–267

    Article  CAS  PubMed  Google Scholar 

  • Thomas CM, Jones DA, English JJ, Carroll BJ, Bennetzen JL, Harrison K, Burbidge A, Bishop GJ, Jones JD (1994) Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol Gen Genet 242:573–585

    CAS  PubMed  Google Scholar 

  • Touraev A, Stoger E, Voronin V, Heberle-Bors E (1997) Plant male germ line transformation. Plant J 12:949–956

    Article  CAS  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE,Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Castiglione S, Chen Y, Li L, Han Y, Tian Y, Gabriel DW, Han Y, Mang K, Sala F (1996) Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgenic Res 5:289–301

    CAS  Google Scholar 

  • Wu K, Jones R, Danneberger L, Scolnick PA (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res 22:3257–3258

    Google Scholar 

  • Ye GN, Stone D, Pang SZ, Creely W, Gonzalez K, Hin-chee M (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19:249–257

    Article  PubMed  Google Scholar 

  • Zupan J, Muth TR, Draper O, Zambrysky P (2000) Thee transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Labra.

Additional information

Communicated by F. Salamini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labra, M., Vannini, C., Grassi, F. et al. Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip. Theor Appl Genet 109, 1512–1518 (2004). https://doi.org/10.1007/s00122-004-1773-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1773-y

Keywords

Navigation