Skip to main content
Log in

QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Anthracnose fruit rot is an economically important disease that affects pepper production in Indonesia. Strong resistance to two causal pathogens, Colletotrichum gloeosporioides and C. capsici, was found in an accession of Capsicum chinense. The inheritance of this resistance was studied in an F2 population derived from a cross of this accession with an Indonesian hot pepper variety (Capsicum annuum) using a quantitative trait locus (QTL) mapping approach. In laboratory tests where ripe fruits were artificially inoculated with either C. gloeosporioides or C. capsici, three resistance-related traits were scored: the infection frequency, the true lesion diameter (averaged over all lesions that actually developed), and the overall lesion diameter (averaged over all inoculation points, including those that did not develop lesions). One main QTL was identified with highly significant and large effects on all three traits after inoculation with C. gloeosporioides and on true lesion diameter after inoculation with C. capsici. Three other QTL with smaller effects were found for overall lesion diameter and true lesion diameter after inoculation with C. gloeosporioides, two of which also had an effect on infection frequency. Interestingly, the resistant parent carried a susceptible allele for a QTL for all three traits that was closely linked to the main QTL. The results with C. capsici were based on less observations and therefore less informative. Although the main QTL was shown to have an effect on true lesion diameter after inoculation with C. capsici, no significant QTL were identified for overall lesion diameter or infection frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed N, Dey SK, Hundal JS (1991) Inheritance of resistance to anthracnose in chilli. Indian Phytopathol 44:402–403

    Google Scholar 

  • Ben Chaim A, Paran I, Grube RC, Jahn M, van Wijk R, Peleman J (2001) QTL mapping of fruit-related trait in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028

    Article  Google Scholar 

  • Cheema DS, Singh DP, Rawal RD, Deshpande AA (1984) Inheritance of resistance to anthracnose disease in chillies. Capsicum Eggplant Newsl 3:44

    Google Scholar 

  • Duriat AS, Vos J, Marwoto B, Stallen M, Nurtika N, Buurma J (1991) Report of a workshop on hot pepper planning. Internal Communication No. 36 of Lembang Horticultural Research Institute LEHRI and ATA395, p 15

  • Hartman GL, Wang TC (1992) Anthracnose of pepper—a review and report of a training course. Asian Vegetable Research and Development Center. Working Paper 5, pp 31

  • Kang BC, Nahm SH, Huh JH, Yoo HS, Yu JW, Lee MH, Kim BD (2001) An interspecific (Capsicum annuum × C. chinense) F2 linkage map in pepper using RFLP and AFLP markers. Theor Appl Genet 102:531–539

    Article  CAS  Google Scholar 

  • Lawes Agricultural Trust (2002) genstat for Windows, 6th edn. VSN Int, UK

  • Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A, Chauvet JC, Daubeze AM, Palloix A (2002) Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45:839–854

    Article  CAS  PubMed  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    CAS  PubMed  Google Scholar 

  • Paran I, Rouppe van der Voort J, Lefebvre V, Jahn M, Landry L, Van Schriek M, Tanyolac B, Caranta C, Ben Chaim A, Livingstone K, Palloix A, Peleman J (2004) An integrated genetic linkage map of pepper (Capsicum spp.). Mol Breed 13:251–261

    Article  CAS  Google Scholar 

  • Park HK, Kim BS, Lee WS (1990) Inheritance of resistance to anthracnose (Colletotrichum spp.) in pepper (Capsicum annuum L.) I. Genetic analysis of anthracnose resistance by diallel crosses. J Korean Soc Hortic Sci 31:91–105

    Google Scholar 

  • Qing-Lin C, Kanchana-Udomkarn K, Jaunet T, Mongkolporn O (2002) Inheritance of resistance to pepper anthracnose caused by Colletotrichum capsici. Capsicum Eggplant Newsl 21:85–88

    Google Scholar 

  • Sutton BC (1980) The coelomycetes: fungi imperfecti with Pycnidia Acervuli and Stromata. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Van der Beek JD, Verkerk R, Zabel P, Lindhout P (1992) Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1. Theor Appl Genet 84:106–112

    Google Scholar 

  • Van der Linden CG, Wouters DCAE, Mihalka V, Kochieva EZ, Smulders MJM, Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109:384–393

    PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) joinmap 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) mapqtl 4.0, software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen

  • Voorrips RE (2002) mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The SSR primers were kindly provided by Dr. I. Nagy (Agricultural Biotechnology Center, Gödöllö, Hungary). The Seq1 primer for NBS profiling was developed by J. Mes of Plant Research International, Wageningen, The Netherlands. The work of Lia Sanjaya was made possible by a grant of the Royal Netherlands Academy of Arts and Sciences (KNAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roeland E. Voorrips.

Additional information

Communicated by R. Bernardo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voorrips, R.E., Finkers, R., Sanjaya, L. et al. QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense. Theor Appl Genet 109, 1275–1282 (2004). https://doi.org/10.1007/s00122-004-1738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1738-1

Keywords

Navigation