Skip to main content
Log in

High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The objectives of the present study were to develop microsatellite markers for the wild strawberry, Fragaria virginiana, to evaluate segregation patterns of microsatellite alleles in this octoploid species, and assess genetic variability at microsatellite loci in a wild population. A genomic library was screened for microsatellite repeats and several PCR primers were designed and tested. We also tested the use of heterologous primers and found that F. virginiana primers amplified products in cultivated strawberry, Fragaria × ananassa Duch. and Fragaria chiloensis. Similarly, microsatellite loci developed from cultivated strawberry also successfully amplified F. virginiana loci. We investigated four microsatellite loci in detail, three developed from F. virginiana and one from cultivated strawberry. A survey of 100 individuals from a population of F. virginiana in Pennsylvania demonstrated high heterozygosities (He or gene diversity ranged from 0.80 to 0.88 per locus) and allelic diversity (12–17 alleles per locus), but individual plants had no more than two alleles per locus. Segregation patterns in parents and progeny of two controlled crosses at these four loci were consistent with disomic Mendelian inheritance. Together these findings suggest that the genome of F. virginiana is "highly diploidized" and at least a subset of microsatellite loci can be treated as codominant, diploid markers. Significant heterozygote deficiencies were found at three of the four loci for hermaphroditic individuals but for only one locus among females in this gynodioecious species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmadi H, Bringhurst RS (1989) Genetics of sex expression in Fragaria species. Am J Bot 78:504–514

    Google Scholar 

  • Akkaya MS, Shoemaker R, Specht JE, Bhagwat AA, Cregan PB (1995) Integration of simple sequence repeat (SSR) DNA markers into a soybean-soybeam linkage map. Crop Sci 35:1439–1445

    CAS  Google Scholar 

  • Aldrich PR, Hamrick JL (1998) Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. Science 281:103–105

    Article  CAS  PubMed  Google Scholar 

  • Arulsekar S, Bringhurst RS, Voth V (1981) Inheritance of PGI and LAP isozymes in octoploid cultivated strawberries. J Am Soc Hort Sci 106:679–683

    CAS  Google Scholar 

  • Ashley MV, Dow BD (1994) The use of microsatellite analysis in population biology: background, methods and potential applications. In: Schierwater B, Wagner GP, DeSalle R (eds) Molecular ecology and evolution: approaches and applications. Birkhauser Verlag, Basel, Switzerland, pp 185–201

  • Ashman T. L (1999) Determinants of sex allocation in a gynodioecious wild strawberry: implications for the evolution of dioecy and sexual dimorphism. J Evol Biol 12:648–661

    Article  Google Scholar 

  • Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Mol Biol Evol 14:1023–1034

    Google Scholar 

  • Bringhurst RS (1990) Cytogenetics and evolution in American Fragaria. HortScience 25:879–881

    Google Scholar 

  • Butcher PA, Decroocq S, Gray Y, Moran GF (2000) Development, inheritance and cross-species amplification of microsatellite markers from Acacia mangium. Theor Appl Genet V101:1282–1290

    Article  Google Scholar 

  • Buteler MI, Jarret RL, LaBonte DR (1999) Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theor Appl Genet 99:123–132

    CAS  Google Scholar 

  • Chase MR, Moller C, Kesseli R, Bawa KS (1996) Distant gene flow in tropical trees. Nature 383:398–399

    CAS  Google Scholar 

  • Cordeiro GM, Taylor GO, Henry RJ (2000) Characterization of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploid species. Plant Sci 155:161–168

    CAS  PubMed  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung J (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Dayanandan S, Kamaljit SB, Kesseli R (1997) Conservation of microsatellites among tropical trees (Leguminosae) Am J Bot 84:1658–1663

    Google Scholar 

  • Di Gaspero G, Peterlunger E, Testolin R, Edwards KJ, Cipriani G (2000) Conservation of microsatellite loci within the genus Vitus. Theor Appl Genet 101:301–308

    Article  Google Scholar 

  • Diwan N, Bhagwat AA, Bauchan GB, Cregan PB (1997a) Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species. Genome V40:887–895

    Google Scholar 

  • Diwan N, Bhatwat AA, Bauchan GB, Cregan PB (1997b) Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species. Genome 40:887–895

    CAS  Google Scholar 

  • Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Mol Ecol 5:120–132

    Google Scholar 

  • Dow BD, Ashley MV (1998a) Factors influencing male mating success in bur oak, Quercus macrocarpa. New For 15:161–181

    Article  Google Scholar 

  • Dow BD, Ashley MV (1998b) High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J Hered 89:62–70

    Article  Google Scholar 

  • Dow BD, Ashley MV, Howe HF (1995) Characterization of highly variable (GA/CT) n microsatellites in the bur oak, Quercus macrocarpa. Theor Appl Genet 91:137–141

    CAS  Google Scholar 

  • Dutech C, Amsellem L, Billotte N, Jarne P (2000) Characterization of (GA)(eta) microsatellite loci using an enrichment protocol in the neotropical tree species Vouacapoua americana. Mol Ecol V9:1433–1435

    Article  Google Scholar 

  • Ellis RP, McNicol JW, Baird E, Booth A, Lawrence P, Thomas B, Powell W (1997) The use of AFLPs to examine genetic relatedness in Barley. Mol Breed 3:359–369

    CAS  Google Scholar 

  • Fischer D, Bachmann K (1998) Microsatellite enrichment in organisms with large genomes (Allium cepa L.). Biotechniques V24:796+

    Google Scholar 

  • Grant V (1971) Plant speciation. Columbia University Press, New York London

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Basset H, Foster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics V48:361–372

    Google Scholar 

  • Gupta PK, Balyan IS, Sharma PC, Ramesth B (1996) Microsatellites in plants—a new class of molecular markers. Curr Sci 70:45–54

    CAS  Google Scholar 

  • Hancock JF (1999) Strawberries. CAB International Publishing, New York

  • Huang W-G, Cipriani G, Morgante M, Testolin R (1998) Microsatellite DNA in Actinidia chinensis: isolation, characterisation, and homology in related species. Theor Appl Genet 97:1269–1278

    Article  Google Scholar 

  • Isabel N, Beaulieu J, Theriault P, Bousquet J (1999) Direct evidence for biased gene-diversity estimates from dominant random amplified polymorphic DNA (RAPD) fingerprints. Mol Ecol 8:477–483

    Google Scholar 

  • Keim P, Paige KN, Whitham TG, Lark KG (1989) Genetic analysis of an interspecific hybrid swarm of Populus: occurrence of unidirectional introgression. Genetics 123:557–565

    CAS  PubMed  Google Scholar 

  • Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. http://lewis.eeb.uconn.edu/lewishome/software.htm

  • Lian C, Nara K, Nakaya H, Zhou Z, Wu B, Miyashita M, Hogetsu T (2001) Development of microsatellite markers in polyploid Salix reinii. Mol Ecol Notes 1:160–161

    Article  CAS  Google Scholar 

  • Lian C, Oishi R, Miyashita N, Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003) Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol Ecol 12:609–618

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    CAS  PubMed  Google Scholar 

  • Nourse SM, Fickus EW, Cregan PB, Hokanson SC (2002) Development of simple sequence repeat (SSR) molecular markers in strawberry. In: Hokanson SC Jamieson AR (eds) Strawberry research to 2001. ASHS Press Alexandria, Virginia, pp 48–53

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    CAS  PubMed  Google Scholar 

  • Perez R, Albornoz J, Dominguez A (1998) An evaluation of RAPD fragment reproducibility and nature. Mol Ecol 7:1347–1357

    CAS  PubMed  Google Scholar 

  • Rabouam C, Comes AM, Bretagnolle V, Humbert J-F, Periquet G, Bigot Y (1999) Features of DNA fragments obtained by random amplified polymorphic DNA (RAPD) assays. Mol Ecol 8:493–503

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrells M, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rongwen J, Akkaya MS, Bhatwat AA, Lavi U, Cregan PB (1995) The use of microsatellite DNA markers for soybean genotypes identification. Theor Appl Genet 90:43–48

    CAS  Google Scholar 

  • Staudt G (1962) Taxonomic studies in the genus Fragaria, typification of Fragaria species known at the time of Linnaeus. Can J Bot 40:870–886

    Google Scholar 

  • Staudt G (1989) The species of Fragaria, their taxonomic and geographical distribution. Acta Hortic 265:23–33

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, Reading, Massachusetts

  • Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J, Kremer A (1999) Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Mol Ecol 8:831–841

    Article  Google Scholar 

  • Valleau WD (1923) The inheritance of flower types and fertility in the strawberry. Am J Bot 10:137–142

    Google Scholar 

  • Van Treuren R, Kuittinen H, Kärkkää K, Baena-Gonzalez E, Savolainen O (1997) Evolution of microsatellites in Arabis petraea and Arabislyrata, outcrossing relatives of Arabidopsis thaliana. Mol Biol Evol 14:220–229

    PubMed  Google Scholar 

  • Viruel MA, Sánchez D, Arús P (2002) An SSR and RFLP linkage map for the octoploid strawberry (Fragaria × ananassa). In: (2002) Plant, animal and microbe genomes. Xth Conf, San Diego, California, http://www.intl-pag.org/pag/10/abstracts/PAGX_p660.html

  • Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short-tandem DNA repeats. Theor Appl Genet 88:1–6

    CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Google Scholar 

  • Whitton J, Rieseberg L, Ungerer M (1997) Microsatellite loci are not conserved across the Asteraceae. Mol Biol Evol 14:204–209

    CAS  PubMed  Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. York, S. Warnagiris, J. Fessler, C. Evenovski, K. Salazar and S. Garrett for greenhouse, laboratory and other assistance. This work was supported by the National Science Foundation (DEB 9903802 and 9904115 to T.-L.A. and M.V.A, respectively). This work was conducted in part while M.V.A. was a Sabbatical Fellow at the National Center for Ecological Analysis and Synthesis, a Center funded by the National Science Foundation, the University of California, and the Santa Barbara Campus. This is contribution 129 to the Pymatuning Laboratory of Ecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ashley.

Additional information

Communicated by J. Dvorak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashley, M.V., Wilk, J.A., Styan, S.M.N. et al. High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae). Theor Appl Genet 107, 1201–1207 (2003). https://doi.org/10.1007/s00122-003-1370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1370-5

Keywords

Navigation