Skip to main content
Log in

Innovative Diagnostik in der Früherkennung und beim Staging des lokalisierten Prostatakarzinoms

Innovative concepts in early cancer detection and staging of localized prostate cancer

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Das Prostatakarzinom ist das häufigste Malignom des Mannes. Zur Früherkennung wird Männern >50 Jahren eine einmal jährliche digito-rektale Untersuchung und PSA-Bestimmung empfohlen. Erfreulicherweise nimmt die krankheitsspezifische Mortalitätsrate aufgrund der Fortschritte in Screening, Staging und ansteigendem Patientenbewusstsein ab. Wie auch immer, etwa 30% aller Männer mit einem klinisch lokal begrenzten Prostatakarzinom weisen nach histopathologischer Aufarbeitung eine extrakapsuläre Ausbreitung oder Samenblaseninfiltration auf. Aus diesem Grund besteht ein Bedarf für eine möglichst exakte Bildgebung, um dem Patienten eine optimale stadiengerechte Therapie anbieten zu können.

Derzeit existieren eine vielversprechende Anzahl an neuen Bildgebungstechnologien, die die Diagnostik und das Staging verbessern können und so helfen, den Patienten eine optimale stadiengerechte Therapie anbieten zu können. Diese Übersichtsarbeit beleuchtet die aktuellen Entwicklungen auf dem Gebiet der Früherkennung und des Stagings beim lokal begrenzten Prostatakarzinoms.

Abstract

Prostate cancer is the most common malignancy in males. Men aged 50 years and older are recommended to undergo an annual digital rectal examination (DRE) and determination of prostate-specific antigen (PSA) in serum for early detection. Fortunately, disease-specific mortality continues to decline as a result of advances in screening, staging, and patient awareness. However, about 30% of men with a clinically organ-confined disease show evidence of extracapsular extension or seminal vesicle invasion on pathological analysis. Consequently, there is a need for more accurate diagnostic tools for planning tailored treatment.

A variety of modern imaging techniques has been implemented in an attempt to obtain more precise staging, thereby allowing for more detailed counseling, and instituting optimum therapy. This review highlights developments in prostate cancer imaging that may improve staging and treatment planning for prostate cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. American Cancer Society (2004) Cancer facts and figures. American Cancer Society, Atlanta

  2. Pepper RJ, Pati J, Kaisary AV (2005) The incidence and treatment of lymphoceles after radical retropubic prostatectomy. BJU Int 95: 772–775

    Article  PubMed  Google Scholar 

  3. Halpern EJ, Strup SE (2000) Using gray-scale and color and power Doppler sonography to detect prostatic cancer. AJR Am J Roentgenol 174: 623–627

    PubMed  Google Scholar 

  4. Norberg M, Egevad L, Holmberg L, Sparen P, Norlen BJ, Busch C (1997) The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology 50: 562–566

    Article  PubMed  Google Scholar 

  5. Naughton CK, Miller DC, Mager DE, Ornstein DK, Catalona WJ (2000) A prospective randomized trial comparing 6 versus 12 prostate biopsy cores: impact on cancer detection. J Urol 164: 388–392

    Article  PubMed  Google Scholar 

  6. Cornud F, Belin X, Piron D et al. (1997) Color Doppler-guided prostate biopsies in 591 patients with an elevated serum PSA level: Impact on Gleason score for nonpalpable lesions. Urology 49: 709–715

    Article  PubMed  Google Scholar 

  7. Loch T (2004) Computerized supported transrectal ultrasound (C-TRUS) in the diagnosis of prostate cancer. Urologe A 43: 1377–1384

    Article  PubMed  Google Scholar 

  8. Rifkin MD, Zerhouni EA, Gatsonis CA et al. (1990) Comparison of magnetic resonance imaging and ultrasonography in staging early prostate cancer. Results of a multi-institutional cooperative trial. N Engl J Med 323: 621–626

    PubMed  Google Scholar 

  9. Smith JA Jr, Scardino PT, Resnick MI, Hernandez AD, Rose SC, Egger MJ (1997) Transrectal ultrasound versus digital rectal examination for the staging of carcinoma of the prostate: Results of a prospective, multi-institutional trial. J Urol 157: 902–906

    Article  PubMed  Google Scholar 

  10. Ikonen S, Karkkainen P, Kivisaari L et al. (1998) Magnetic resonance imaging of clinically localized prostatic cancer. J Urol 159: 915–919

    Article  PubMed  Google Scholar 

  11. Presti JC Jr, Hricak H, Narayan PA, Shinohara K, White S, Carroll PR (1996) Local staging of prostatic carcinoma: comparison of transrectal sonography and endorectal MR imaging. AJR Am J Roentgenol 166: 103–108

    PubMed  Google Scholar 

  12. Leibovici D, Kamat AM, Do KA et al. (2005) Transrectal ultrasound versus magnetic resonance imaging for detection of rectal wall invasion by prostate cancer. Prostate 62: 101–104

    Article  PubMed  Google Scholar 

  13. Shirahama T, Niwa K, Katsura Y et al. (1999) Endorectal ultrasonography for the assessment of rectal wall invasion in intrapelvic tumor: a preliminary report. Int J Urol 6: 293–297

    Article  PubMed  Google Scholar 

  14. Colombo T, Schips L, Augustin H, Gruber H, Hebel P, Petritsch PH, Hubmer G (1999) Value of transrectal ultrasound in preoperative staging of prostate cancer. Minerva Urol Nefrol 51: 1–4

    PubMed  Google Scholar 

  15. Frauscher F, Klauser A, Halpern EJ (2002) Advances in ultrasound for the detection of prostate cancer. Ultrasound Q 18: 135–142

    Article  PubMed  Google Scholar 

  16. Kelly IM, Lees WR, Rickards D (1993) Prostate cancer and the role of color Doppler US. Radiology 189: 153–156

    PubMed  Google Scholar 

  17. Unal D, Sedelaar JP, Aarnink RG et al. (2000) Three-dimensional contrast-enhanced power Doppler ultrasonography and conventional examination methods: the value of diagnostic predictors of prostate cancer. BJU Int 86: 58–64

    Article  Google Scholar 

  18. Halpern EJ, Frauscher F, Rosenberg M, Gomella LG (2002) Directed biopsy during contrast-enhanced sonography of the prostate. AJR Am J Roentgenol 178: 915–919

    PubMed  Google Scholar 

  19. Bogers HA, Sedelaar JP, Beerlage HP, de la Rosette JJ, Debruyne FM, Wijkstra H, Aarnink RG (1999) Contrast-enhanced three-dimensional power Doppler angiography of the human prostate: Correlation with biopsy outcome. Urology 54: 97–104

    Article  PubMed  Google Scholar 

  20. Halpern EJ, Rosenberg M, Gomella LG (2001) Prostate cancer: Contrast-enhanced us for detection. Radiology 219: 219–225

    PubMed  Google Scholar 

  21. Frauscher F, Pallwein L, Klauser A et al. (2005) Ultrasound contrast agents and prostate cancer. Radiologe 45: 544–551

    Article  PubMed  Google Scholar 

  22. Strohmeyer D, Frauscher F, Klauser A et al. (2001) Contrast-enhanced transrectal color doppler ultrasonography (TRCDUS) for assessment of angiogenesis in prostate cancer. Anticancer Res 21: 2907–2913

    PubMed  Google Scholar 

  23. Loch T, Leuschner I, Genberg C et al. (2000) Improvement of transrectal ultrasound. Artificial neural network analysis (ANNA) in detection and staging of prostatic carcinoma. Urologe A 39: 341–347

    Article  PubMed  Google Scholar 

  24. Loch T, Leuschner I, Genberg C et al. (1999) Artificial neural network analysis (ANNA) of prostatic transrectal ultrasound. Prostate 39: 198–204

    Article  PubMed  Google Scholar 

  25. Ellis WJ, Chetner MP, Preston SD, Brawer MK (1994) Diagnosis of prostatic carcinoma: the yield of serum prostate specific antigen, digital rectal examination and transrectal ultrasonography. J Urol 152: 1520–1525

    PubMed  Google Scholar 

  26. Carter HB, Hamper UM, Sheth S, Sanders RC, Epstein JI, Walsh PC (1989) Evaluation of transrectal ultrasound in the early detection of prostate cancer. J Urol 142: 1008–1010

    PubMed  Google Scholar 

  27. Mehta SS, Azzouzi AR, Hamdy FC (2004) Three dimensional ultrasound and prostate cancer. World J Urol 22: 339–345

    Article  PubMed  Google Scholar 

  28. Hamper UM, Trapanotto V, DeJong MR, Sheth S, Caskey CI (1999) Three-dimensional US of the prostate: early experience. Radiology 212: 719–723

    PubMed  Google Scholar 

  29. Garg S, Fortling B, Chadwick D, Robinson MC, Hamdy FC (1999) Staging of prostate cancer using 3-dimensional transrectal ultrasound images: A pilot study. J Urol 162: 1318–1321

    Article  PubMed  Google Scholar 

  30. Strasser H, Frauscher F, Klauser A et al. (2004) Transrectal three dimensional sonography. Techniques and indications. Urologe A 43: 1371–1376

    Article  PubMed  Google Scholar 

  31. Sauvain JL, Palascak P, Bourscheid D, Chabi C, Atassi A, Bremon JM, Palascak R (2003) Value of power doppler and 3D vascular sonography as a method for diagnosis and staging of prostate cancer. Eur Urol 44: 21–30

    Article  PubMed  Google Scholar 

  32. Hricak H, Dooms GC, Jeffrey RB et al. (1987) Prostatic carcinoma: Staging by clinical assessment, CT, and MR imaging. Radiology 162: 331–336

    PubMed  Google Scholar 

  33. Yu KK, Hricak H (2000) Imaging prostate cancer. Radiol Clin North Am 38: 59–85

    Article  PubMed  Google Scholar 

  34. Oyen RH, Van Poppel HP, Ameye FE, Van de Voorde WA, Baert AL, Baert LV (1994) Lymph node staging of localized prostatic carcinoma with CT and CT-guided fine-needle aspiration biopsy: Prospective study of 285 patients. Radiology 190: 315–322

    PubMed  Google Scholar 

  35. Nicolas V, Beese M, Keulers A, Bressel M, Kastendieck H, Huland H (1994) MR tomography in prostatic carcinoma: comparison of conventional and endorectal MRT. Rofo 161: 319–326

    PubMed  Google Scholar 

  36. Tempany CM, Rahmouni AD, Epstein JI, Walsh PC, Zerhouni EA (1991) Invasion of the neurovascular bundle by prostate cancer: evaluation with MR imaging. Radiology 181: 107–112

    PubMed  Google Scholar 

  37. Brassell SA, Rosner IL, McLeod DG (2005) Update on magnetic resonance imaging, ProstaScint, and novel imaging in prostate cancer. Curr Opin Urol 15: 163–166

    Article  PubMed  Google Scholar 

  38. Beyersdorff D, Hamm B (2005) MRI for troubleshooting detection of prostate cancer. Rofo 177: 788–795

    PubMed  Google Scholar 

  39. Dhingsa R, Qayyum A, Coakley FV et al. (2004) Prostate cancer localization with endorectal MR imaging and MR spectroscopic imaging: effect of clinical data on reader accuracy. Radiology 230: 215–220

    PubMed  Google Scholar 

  40. Perrotti M, Han KR, Epstein RE et al. (1999) Prospective evaluation of endorectal magnetic resonance imaging to detect tumor foci in men with prior negative prostastic biopsy: a pilot study. J Urol 162: 1314–1317

    Article  PubMed  Google Scholar 

  41. Beyersdorff D, Taupitz M, Winkelmann B, Fischer T, Lenk S, Loening SA, Hamm B (2002) Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: Value of MR imaging. Radiology 224: 701–706

    PubMed  Google Scholar 

  42. D’Amico AV (1996) What is the optimal patient selection for combined androgen ablative and radiation therapy? The role of combined modality staging. Hematol Oncol Clin North Am 10: 643–651

    Article  PubMed  Google Scholar 

  43. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58–61

    Article  PubMed  Google Scholar 

  44. Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15: 621–628

    PubMed  Google Scholar 

  45. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14: 249–265

    PubMed  Google Scholar 

  46. Hawighorst H, Schaeffer U, Knapstein PG et al. (1998) Detection of angiogenesis-dependent parameters by functional MRI: Correlation with histomorphology and evaluation of clinical relevance as prognostic factor using cervix carcinoma as an example. Rofo 169: 499–504

    PubMed  Google Scholar 

  47. Brown G, Macvicar DA, Ayton V, Husband JE (1995) The role of intravenous contrast enhancement in magnetic resonance imaging of prostatic carcinoma. Clin Radiol 50: 601–606

    PubMed  Google Scholar 

  48. Engelbrecht MR, Huisman HJ, Laheij RJ et al. (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229: 248–254

    PubMed  Google Scholar 

  49. Gossmann A, Okuhata Y, Shames DM (1999) Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging in the rat: comparison of macromolecular and small-molecular contrast media--preliminary experience. Radiology 213: 265–272

    PubMed  Google Scholar 

  50. Kiessling F, Huber PE, Grobholz R et al. (2004) Dynamic magnetic resonance tomography and proton magnetic resonance spectroscopy of prostate cancers in rats treated by radiotherapy. Invest Radiol 39: 34–44

    Article  PubMed  Google Scholar 

  51. Scheidler J, Hricak H, Vigneron DB et al. (1999) Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging — clinicopathologic study. Radiology 213: 473–480

    PubMed  Google Scholar 

  52. Taupitz M, Beyersdorff D, Rogalla P (2004) Cross-section diagnosis of tumors of the kidney and prostate gland: CT and MRI. Aktuelle Urol 35: 297–306

    Article  PubMed  Google Scholar 

  53. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ (1996) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7 cm3) spatial resolution. Radiology 198: 795–805

    PubMed  Google Scholar 

  54. Harisinghani MG, Barentsz J, Hahn PF et al. (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348: 2491–2499

    Article  PubMed  Google Scholar 

  55. Hautzel H, Muller-Mattheis V, Herzog H et al. (2002) The (11C) acetate positron emission tomography in prostatic carcinoma. New prospects in metabolic imaging. Urologe A 41: 569–576

    Article  PubMed  Google Scholar 

  56. DeGrado TR, Coleman RE, Wang S et al. (2001) Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61: 110–117

    PubMed  Google Scholar 

  57. DeGrado TR, Baldwin SW, Wang S et al. (2001) Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 42: 1805–1814

    PubMed  Google Scholar 

  58. Schoder H, Larson SM (2004) Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 34: 274–292

    Article  PubMed  Google Scholar 

  59. Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57: 108–111

    Article  PubMed  Google Scholar 

  60. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 155: 994–998

    Article  PubMed  Google Scholar 

  61. Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36: 31–35

    Article  Google Scholar 

  62. Oyama N, Akino H, Suzuki Y, Kanamaru H, Sadato N, Yonekura Y, Okada K (1999) The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 29: 623–629

    Article  PubMed  Google Scholar 

  63. Machtens S, Boerner AR, Hofmann M, Knapp WH, Jonas U (2004) Positron emission tomography (PET) for diagnosis and monitoring of treatment for urological tumors. Urologe A 43: 1397–1409

    Article  PubMed  Google Scholar 

  64. Oyama N, Miller TR, Dehdashti F et al. (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44: 549–555

    PubMed  Google Scholar 

  65. Kato T, Tsukamoto E, Kuge Y et al. (2002) Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imag 29: 1492–1495

    Article  Google Scholar 

  66. Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39: 990–995

    PubMed  Google Scholar 

  67. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ (2002) Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 42: 18–23

    Article  PubMed  Google Scholar 

  68. Kotzerke J, Prang J, Neumaier B et al. (2000) Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27: 1415–1419

    Article  PubMed  Google Scholar 

  69. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ (2003) 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44: 32–39

    Article  PubMed  Google Scholar 

  70. Kotzerke J, Volkmer BG, Glatting G et al. (2003) Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 42: 25–30

    PubMed  Google Scholar 

  71. Blumstein N (2003) Is 11C-Choline PET/CT better tan TRUS-guided biopsy for detection prostate cancer. Eur J Nucl Med 30: 193

    Google Scholar 

  72. Blumstein N (2005) Stellenwert der PET/CT-Diagnostik beim Prostatakarzinom. Nuklearmedizin 44: 15–19

    PubMed  Google Scholar 

  73. Schmid DT, Zweifel R (2005) Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 235: 623–628

    PubMed  Google Scholar 

  74. Picchio M, Landoni C (2003) Value of 11C choline-positron emission tomography for restaging prostate cancer: a comparison with 18F fluorodeoxyglucose-positron emission tomography. J Urol 169: 1337–1340

    Article  PubMed  Google Scholar 

  75. Yamaguchi T, Uemura H (2005) Prostate cancer: A comparative study of (11)C-Choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imag 32: 742–748

    Article  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rinnab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinnab, L., Küfer, R., Hautmann, R.E. et al. Innovative Diagnostik in der Früherkennung und beim Staging des lokalisierten Prostatakarzinoms. Urologe 44, 1262–1276 (2005). https://doi.org/10.1007/s00120-005-0931-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-005-0931-4

Schlüsselwörter

Keywords

Navigation