Skip to main content
Log in

Saures Gliafaserprotein beim Patienten mit akuten Schlaganfallsymptomen

Diagnostischer Marker einer Hirnblutung

Glial fibrillary acidic protein in patients with symptoms of acute stroke

Diagnostic marker of cerebral hemorrhage

  • Originalien
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Das saure Gliafaserprotein („glial fibrillary acidic protein“, GFAP) ist ein hirnspezifisches Protein, das in Astrozyten in größeren Mengen exprimiert wird und wichtige Funktionen im Rahmen der Aufrechterhaltung des Zytoskeletts übernimmt. Nekrose und Zytolyse von astroglialen Zellen führen zur Freisetzung von GFAP in den Extrazellularraum und ins Blut. Hirnblutungen bedingen die unmittelbare mechanische Zelldestruktion, während bei Hirninfarkten Nekrose und Zytolyse histopathologisch in relevantem Ausmaß erst 6–12 h nach Symptombeginn zu finden sind. Insofern öffnet sich ein diagnostisches Fenster in den ersten Stunden nach dem Auftreten einer Schlaganfallsymptomatik, in dem erhöhte GFAP-Werte im Blut eine intrazerebrale Blutung anzeigen könnten. Diese Übersichtsarbeit beschreibt die dem Testprinzip zugrunde liegende Pathophysiologie und fasst die wesentlichen Ergebnisse der relevanten Forschungsarbeiten zusammen. Potenzielle Implikationen des GFAP-Tests wären die verbesserte prähospitale Triage von akuten Schlaganfallpatienten sowie die Möglichkeit, bei Patienten mit akuten Hirnblutungen rasch eine Therapie (Blutdrucksenkung, Gerinnungsausgleich bei antikoagulanzienassoziierter Blutung) einleiten zu können. Anderweitige mögliche Einsatzgebiete für GFAP liegen im Bereich der traumatischen Hirnschädigung und beim Glioblastom.

Summary

Glial fibrillary acidic protein (GFAP) is a highly brain-specific protein that is expressed in large quantities in astrocytes and has important functions in terms of maintaining and stabilizing the cytoskeleton. Acute intracerebral hemorrhage leads to an immediate mechanical destruction of astroglial cells with the subsequent release of GFAP into the extracellular space and the bloodstream. On the other hand, necrosis, cytolysis and GFAP release does not occur before 6–12 h after symptom onset in ischemic stroke. Thus, in the early hours after stroke increased GFAP values could indicate intracerebral hemorrhage. This review article describes the underlying pathophysiology of the test and guides the reader through the available data. Potential implications regarding the prehospital triage of acute stroke patients are discussed, including the possibility to initiate hyperacute treatment, such as blood pressure reduction in patients with intracerebral hemorrhage. Other areas of interest for a potential GFAP test include traumatic brain injury and malignant gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Aguilar MI, Hart RG, Kase CS et al (2007) Treatment of warfarin-associated intracerebral hemorrhage: literature review and expert opinion. Mayo Clin Proc 82:82–92

    Article  CAS  PubMed  Google Scholar 

  2. Anderson CS, Heeley E, Huang Y et al (2013) Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 368:2355–2365

    Article  CAS  PubMed  Google Scholar 

  3. Anderson RE, Hansson LO, Nilsson O et al (2001) High serum S100B levels for trauma patients without head injuries. Neurosurgery 48:1255–1258

    CAS  PubMed  Google Scholar 

  4. Broderick JP, Palesch YY, Demchuk AM et al (2013) Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med 368:893–903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brown TJ, Hess J, Shapiro L, Shaler RC (1993) Pregnancy protein-SP1: identification tool in forensic bloodstains. Can Soc Forensic Sci J 26:69–80

    Article  Google Scholar 

  6. Brunkhorst RP, Pfeilschifter W, Foerch C (2010) Astroglial proteins as diagnostic markers of acute intracerebral hemorrhage – pathophysiological background and clinical findings. Transl Stroke Res 1:246–251

    Article  CAS  PubMed  Google Scholar 

  7. Bukhari W, Barnet MH, Prain K, Broadley SA (2012) Molecular pathogenesis of neuromyelitis optica. Int J Mol Sci 13:12970–12993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Diaz-Arrastia R, Wang KK, Papa L et al (2014) Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J Neurotrauma 31:19–25

    Article  PubMed  Google Scholar 

  9. Dvorak F, Haberer I, Sitzer M, Foerch C (2009) Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis 27:37–41

    Article  CAS  PubMed  Google Scholar 

  10. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451

    Article  CAS  PubMed  Google Scholar 

  11. Foerch C, Curdt I, Yan B et al (2006) Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry 77:181–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Foerch C, Niessner M, Back T et al (2012) Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke. Clin Chem 58:237–245

    Article  CAS  PubMed  Google Scholar 

  13. Foerch C, Wunderlich MT, Dvorak F et al (2007) Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke 38:2491–2495

    Article  CAS  PubMed  Google Scholar 

  14. Gladstone DJ, Rodan LH, Sahlas DJ et al (2009) A citywide prehospital protocol increases access to stroke thrombolysis in Toronto. Stroke 40:3841–3844

    Article  CAS  PubMed  Google Scholar 

  15. Herrmann M, Vos P, Wunderlich MT et al (2000) Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 31:2670–2677

    Article  CAS  PubMed  Google Scholar 

  16. Honda M, Tsuruta R, Kaneko T et al (2010) Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma 69:104–109

    Article  CAS  PubMed  Google Scholar 

  17. Husain H, Savage W, Grossman SA et al (2012) Pre- and post-operative plasma glial fibrillary acidic protein levels in patients with newly diagnosed gliomas. J Neurooncol 109:123–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ilhan-Mutlu A, Wagner L, Widhalm G et al (2013) Exploratory investigation of eight circulating plasma markers in brain tumor patients. Neurosurgical review 36:45–55

    Article  PubMed  Google Scholar 

  19. Jung CS, Foerch C, Schanzer A et al (2007) Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain 130:3336–3341

    Article  CAS  PubMed  Google Scholar 

  20. Kaneko T, Kasaoka S, Miyauchi T et al (2009) Serum glial fibrillary acidic protein as a predictive biomarker of neurological outcome after cardiac arrest. Resuscitation 80:790–794

    Article  CAS  PubMed  Google Scholar 

  21. Lennon VA, Kryzer TJ, Pittock SJ et al (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202:473–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lumpkins KM, Bochicchio GV, Keledjian K et al (2008) Glial fibrillary acidic protein is highly correlated with brain injury. J Trauma 65:778–782

    Article  CAS  PubMed  Google Scholar 

  23. Mayer CA, Brunkhorst R, Niessner M et al (2013) Blood levels of glial fibrillary acidic protein (GFAP) in patients with neurological diseases. PLoS One 8:e62101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. McMullan JT, Knight WA, Clark JF et al (2010) Time-critical neurological emergencies: the unfulfilled role for point-of-care testing. Int J Emerg Med 3:127–131

    Article  PubMed Central  PubMed  Google Scholar 

  25. Missler U, Wiesmann M, Wittmann G et al (1999) Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem 45:138–141

    CAS  PubMed  Google Scholar 

  26. Misu T, Takano R, Fujihara K et al (2009) Marked increase in cerebrospinal fluid glial fibrillar acidic protein in neuromyelitis optica: an astrocytic damage marker. J Neurol Neurosurg Psychiatry 80:575–577

    Article  CAS  PubMed  Google Scholar 

  27. Mondello S, Papa L, Buki A et al (2011) Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care 15:R156

    Article  PubMed Central  PubMed  Google Scholar 

  28. Nylen K, Csajbok LZ, Ost M et al (2007) Serum glial fibrillary acidic protein is related to focal brain injury and outcome after aneurysmal subarachnoid hemorrhage. Stroke 38:1489–1494

    Article  CAS  PubMed  Google Scholar 

  29. Pelinka LE, Kroepfl A, Schmidhammer R et al (2004) Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma 57:1006–1012

    Article  CAS  PubMed  Google Scholar 

  30. Steiner T, Rosand J, Diringer M (2006) Intracerebral hemorrhage associated with oral anticoagulant therapy: current practices and unresolved questions. Stroke 37:256–262

    Article  CAS  PubMed  Google Scholar 

  31. Sun Y, Qin Q, Shang YJ et al (2013) The accuracy of glial fibrillary acidic protein in acute stroke differential diagnosis: a meta-analysis. Scand J Clin Lab Invest 73:601–606

    Article  CAS  PubMed  Google Scholar 

  32. Ting JY (2011) Letter to the editors: the potential role for prehospital thrombolysis and time-critical stroke transfers in the northern Norway aeromedical retrieval system; In response to: Norum J, Elsbak TM: air ambulance services in the Arctic: a Norwegian study. Int J Emerg Med 2011, 4:1. Int J Emerg Med 4:45

    Article  PubMed Central  PubMed  Google Scholar 

  33. Unden J, Strandberg K, Malm J et al (2009) Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation. J Neurol 256:72–77

    Article  CAS  PubMed  Google Scholar 

  34. Vos PE, Jacobs B, Andriessen TM et al (2010) GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology 75:1786–1793

    Article  CAS  PubMed  Google Scholar 

  35. Vos PE, Lamers KJ, Hendriks JC et al (2004) Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 62:1303–1310

    Article  CAS  PubMed  Google Scholar 

  36. Wardlaw JM, Murray V, Berge E et al (2012) Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet 379:2364–2372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Whiteley W, Tian Y, Jickling GC (2012) Blood biomarkers in stroke: research and clinical practice. Int J Stroke 7:435–439

    Article  PubMed  Google Scholar 

  38. Woertgen C, Rothoerl RD, Wiesmann M et al (2002) Glial and neuronal serum markers after controlled cortical impact injury in the rat. Acta Neurochir 81:205–207

    CAS  Google Scholar 

  39. Wunderlich MT, Wallesch CW, Goertler M (2006) Release of glial fibrillary acidic protein is related to the neurovascular status in acute ischemic stroke. Eur J Neurol 13:1118–1123

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Zhang CH, Lin XL et al (2013) Serum glial fibrillary acidic protein as a biomarker for differentiating intracerebral hemorrhage and ischemic stroke in patients with symptoms of acute stroke: a systematic review and meta-analysis. Neurol Sci 34:1887–1892

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Foerch hat an vergüteten Advisory Boards der Fa. Roche Diagnostics zum Thema GFAP teilgenommen. Er hat Forschungsmittel der Fa. Roche Diagnostics für GFAP-Studien erhalten und ist Miterfinder des Patentes „Use of GFAP for identification of intracerebral hemorrhage“.W. Pfeilschifter, P. Zeiner und R. Brunkhorst geben an, dass kein Interessenkonflikt besteht. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Foerch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foerch, C., Pfeilschifter, W., Zeiner, P. et al. Saures Gliafaserprotein beim Patienten mit akuten Schlaganfallsymptomen. Nervenarzt 85, 982–989 (2014). https://doi.org/10.1007/s00115-014-4128-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-014-4128-1

Schlüsselwörter

Keywords

Navigation