Skip to main content
Log in

Darwin’s warm little pond revisited: from molecules to the origin of life

  • REVIEW
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

All known cosmic and geological conditions and laws of chemistry and thermodynamics allow that complex organic matter could have formed spontaneously on pristine planet Earth about 4,000 mya. Simple gasses and minerals on the surface and in oceans of the early Earth reacted and were eventually organized in supramolecular aggregates and enveloped cells that evolved into primitive forms of life. Chemical evolution, which preceded all species of extant organisms, is a fact. In this review, we have concentrated on experimental and theoretical research published over the last two decades, which has added a wealth of new details and helped to close gaps in our previous understanding of this multifaceted field. Recent exciting progress in the molecular and genetic analyses of existing life, in particular microorganisms of ancient origin, even supports the possibility that a cellular, self-reproducing common ancestor might be assembled and resurrected in anaerobic cultures at some time in the future. Charles Darwin did not, and indeed, could not, address and specify the earliest phases of life which preceded the Origin of Species. However, in a famous letter, he sketched “a warm little pond with all sorts of… (chemicals, in which) …a protein was chemically formed.” We try to trace the impact of his charming clear-sighted metaphor up to the present time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422

    Article  PubMed  CAS  Google Scholar 

  • Bada JL (2001) State-of-art instruments for detecting extraterrestrial life. Proc Natl Acad Sci U S A 98:797–800

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu JP, PLANET Collaboration (2006) Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439:437–439

    Article  PubMed  CAS  Google Scholar 

  • Benner SA, Ellington AD (1987) The last ribo-organism. Nature 329:295–296

    Article  PubMed  CAS  Google Scholar 

  • Bergmann ED, Pullman B (eds) (1972) The purines. Theory and experiment. The Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Blair NE, Bonner WA (1981) A model for the enantiomeric enrichment of polypeptides on the primitive earth. Orig Life 11:331–335

    Article  PubMed  CAS  Google Scholar 

  • Böhler C, Nielsen PE, Orgel LE (1995) Template switching between PNA and RNA oligonucleotides. Nature 376:578–581

    Article  PubMed  Google Scholar 

  • Bondy SC, Harrington ME (1979) l-Amino acids and d-glucose bind stereospecifically to a colloidal clay. Science 203:1243–1244

    Article  PubMed  CAS  Google Scholar 

  • Bossard AR, Raulin F, Mourey D, Toupance G (1982) Organic synthesis from reducing models of the atmosphere of the primitive earth with UV light and electric discharges. J Mol Evol 18:173–178

    Article  PubMed  CAS  Google Scholar 

  • Boussau B, Blanquart S, Necsuela A, Lartillot N, Gouy M (2008) Parallel adaptations to high temperatures in the Archaen eon. Nature 456:942–945

    Article  PubMed  CAS  Google Scholar 

  • Brandes JA, Boctor NZ, Cody GD, Cooper BA, Hazen RM, Yodor HS (1998) Abiotic nitrogen reduction on the early Earth. Nature 395:365–367

    Article  PubMed  CAS  Google Scholar 

  • Calvin M (1969) Chemical evolution. Oxford University Press, Oxford

    Google Scholar 

  • Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Cech TR (1987) The chemistry of self-splicing RNA and RNA enzymes. Science 236:1532–1539

    Article  PubMed  CAS  Google Scholar 

  • Chyba C (1997) A left-handed solar system? Nature 389:234–235

    Article  PubMed  CAS  Google Scholar 

  • Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132

    Article  PubMed  CAS  Google Scholar 

  • Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38:105–115

    Article  PubMed  CAS  Google Scholar 

  • Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS (2000) Primordial carbonylated iron–sulfur compounds and the synthesis of pyruvate. Science 289:1337–1340

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection or the preservation of favoured races in the struggle for life. Murray, London

    Google Scholar 

  • Drobner E, Huber H, Wächtershäuser G, Rose D, Stetter KO (1990) Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346:742–744

    Article  CAS  Google Scholar 

  • de Duve C (1987) Selection by differential molecular survival: a possible mechanism of early chemical evolution. Proc Natl Acad Sci U S A 84:8253–8256

    Article  PubMed  Google Scholar 

  • de Duve C (1991) Blueprint for a cell: the nature and origin of life. Neil Patterson, Burlington

    Google Scholar 

  • Ducluzeau AL, van Lis R, Duval S, Russell MJ, Nitschke W (2009) Was nitric oxide the first deep electron sink? Trends Biochem Sci 34:9–15

    Article  PubMed  CAS  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  PubMed  CAS  Google Scholar 

  • Eigen M (1981) Darwin und die Molekularbiologie. Angew Chem 93:221–229

    Article  CAS  Google Scholar 

  • Eisner JA (2007) Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk. Nature 447:562–564

    Article  PubMed  CAS  Google Scholar 

  • Engel MH, Macko SA (1997) Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389:265–268

    Article  PubMed  CAS  Google Scholar 

  • Engel MH, Nagy B (1982) Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature 296:837–840

    Article  CAS  Google Scholar 

  • Eschenmoser A, Dobler M (1992) Warum pentose- und nicht hexose-Nucleinsäuren? Teil I. Helv Chim Acta 75:218–259

    Article  CAS  Google Scholar 

  • Fegley B, Prinn RG, Hartman H, Watkins GH (1986) Chemical effects of large impacts on the Earth’s primitive atmosphere. Nature 319:305–307

    Article  PubMed  CAS  Google Scholar 

  • Ferris JP, Ertem G (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. J Am Chem Soc 115:12270–12275

    Article  PubMed  CAS  Google Scholar 

  • Ferris JP, Hagan WJ (1984) HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40:1093–1120

    Article  PubMed  CAS  Google Scholar 

  • Ferris JP, Hill AR, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61

    Article  PubMed  CAS  Google Scholar 

  • Fletcher SP, Jagt RBC, Feringa BL (2007) An astrophysically relevant mechanism for amino acid enantiomer enrichment. Chem Commun 2007:2578–2580

    Article  CAS  Google Scholar 

  • Follmann H (1981) Chemie und Biochemie der evolution. Quelle und Meyer, Heidelberg

    Google Scholar 

  • Follmann H (1982) Deoxyribonucleotides and the emergence of DNA in molecular evolution. Naturwissenschaften 69:75–81

    Article  PubMed  CAS  Google Scholar 

  • Follmann H (1986) Have deoxyribonucleotides and DNA been among the earliest biomolecules? Adv Space Res 6:33–38

    Article  PubMed  CAS  Google Scholar 

  • Follmann H (2004) Deoxyribonucleotides: the unusual biochemistry and chemistry of DNA precursors. Chem Soc Rev 33:225–233

    Article  PubMed  CAS  Google Scholar 

  • Folsome C, Brittain A (1981) Model protocells photochemically reduce carbonate to organic carbon. Nature 291:482–484

    Article  CAS  Google Scholar 

  • Försterling HD, Kuhn H, Tews KH (1972) Computermodell zur Bildung selbstorganisierender Systeme. Angew Chem 84:862–865

    Article  Google Scholar 

  • Fox SW (1980) Metabolic microspheres. Origins and evolution. Naturwissenschaften 67:378–383

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A non-hyperthermophilic common ancestor to extant life forms. Science 283:220–221

    Article  PubMed  CAS  Google Scholar 

  • Gaucher EA, Thomson JM, Burgan MF, Benner SA (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425:285–288

    Article  PubMed  CAS  Google Scholar 

  • Gaucher EA, Govindarajan S, Ganesh OK (2008) Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451:704–707

    Article  PubMed  CAS  Google Scholar 

  • Gesteland RF, Cech TR, Atkins JF (eds) (2006) The RNA world, 3rd edn, chapters 1–3, 7. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  • Gil R, Silva FJ, Peretó J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68:518–537

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Goesmann F, Rosenbauer H, Roll R, Szopa C, Raulin F, Sternberg R, Israel G, Meierhenrich U, Thiemann W, Munoz-Caro G (2007) COSAC, the cometary sampling and composition experiment. Space Sci Rev 128:257–280

    Article  CAS  Google Scholar 

  • Griffiths G (2007) Cell evolution and the problem of membrane topology. Nat Rev Mol Cell Biol 8:1018–1024

    Article  PubMed  CAS  Google Scholar 

  • Gutfraind A, Kempf A (2008) Error-reducing structure of the genetic code indicates code origin in non-thermophilic organisms. Orig Life Evol Biosph 38:75–85

    Article  PubMed  CAS  Google Scholar 

  • Halliday AN (2001) In the beginning. Nature 409:144–145 and references quoted therein

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves WR, Mulvihill SJ, Deamer DW (1977) Synthesis of phospholipids and membranes in prebiotic conditions. Nature 266:78–80

    Article  PubMed  CAS  Google Scholar 

  • Hardin G (1950) Darwin and the heterotroph hypothesis. Sci Mon 70:178–179

    Google Scholar 

  • Hartmann J, Brand MC, Dose K (1981) Formation of specific amino acid sequences during thermal polymerization of amino acids. BioSystems 13:141–147

    Article  PubMed  CAS  Google Scholar 

  • Hayes JM (1996) The earliest memories of life on Earth. Nature 384:21–22

    Article  PubMed  CAS  Google Scholar 

  • Hazen RM, Filley TR, Goodfriend GA (2001) Selective adsorption of l- and d-amino acids on calcite: implications for biochemical homochirality. Proc Natl Acad Sci U S A 98:5487–5490

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids with CO: implications for the origin of life. Science 281:670–672

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (2006) Hydroxy and amino acids under possible Hadean, volcanic origin-of-life conditions. Science 314:630–632

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Sato K, Shima Y, Urabe I, Yomo T (2004) Expression of a cascading genetic network within liposomes. FEBS Lett 576:387–390

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SB (2003) How old is planet Earth? Science 300:1513–1514

    Article  PubMed  CAS  Google Scholar 

  • Janda M, Morvova M, Machala Z, Morva I (2008) Study of plasma induced chemistry by DC discharges in CO2/N2/H2O mixtures above a water surface. Orig Life Evol Biosph 38:23–35

    Article  PubMed  CAS  Google Scholar 

  • Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322:404

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF (1998) Nucleic acid enzymes: playing with a fuller deck. Proc Natl Acad Sci U S A 95:5845–5847

    Article  PubMed  CAS  Google Scholar 

  • Jungck JR, Fox SW (1973) Synthesis of oligonucleotides by proteinoid microspheres acting on ATP. Naturwissenschaften 60:425–427

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    Article  PubMed  CAS  Google Scholar 

  • Keefe AD, Miller SL (1995) Are polyphosphates or phosphate esters prebiotic reagents? J Mol Evol 41:693–702

    Article  PubMed  CAS  Google Scholar 

  • Keefe AD, Miller SL, McDonald G, Bada J (1995a) Investigation of the prebiotic synthesis of amino acids and RNA bases from CO2 using FeS/H2S as a reducing agent. Proc Natl Acad Sci U S A 92:11904–11906

    Article  CAS  Google Scholar 

  • Keefe AD, Newton GL, Miller SL (1995b) A possible prebiotic synthesis of pantetheine, a precursor to coenzyme A. Nature 373:683–685

    Article  CAS  Google Scholar 

  • Kleinkauf H, van Liempt H, Palissa H, von Döhren H (1992) Biosynthese von Peptiden: Ein nichtribosomales system. Naturwissenschaften 79:153–162

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy R, Pitsch S, Minton M, Miculka C, Windhab N, Eschenmoser A (1996) Pyranosyl-RNA. Angew Chem 108:1619–1623

    Article  Google Scholar 

  • Kuhn H (1972) Selbstorganisation molekularer Systeme und die evolution des genetischen Apparates. Angew Chem 84:838–862

    Article  Google Scholar 

  • Kuhn H (1976) Model considerations for the origin of life. Naturwissenschaften 63:68–80

    Article  PubMed  CAS  Google Scholar 

  • Kuhn H, Waser J (1981) Molekulare Selbstorganisation und Ursprung des Lebens. Angew Chem 93:495–515

    Article  CAS  Google Scholar 

  • Kuhn H, Försterling HD, Waldeck DH (2009) Principles of physical chemistry, 2nd edn, chapter 29: Origin of life - matter carrying information. Wiley-VCH, Weinheim

  • Kutschera U (2009) Charles Darwin’s Origin of Species, directional selection, and the evolutionary sciences today. Naturwissenschaften doi:10.1007/s00114-009-0603-0

  • Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276

    Article  PubMed  CAS  Google Scholar 

  • Kvenvolden KA (1974) Geochemistry and the origin of life. Benchmark papers in geology, vol. 14. Dowden, Hutchinson & Ross, Stroudsburg

    Google Scholar 

  • Laerdahl JK, Wesendrup R, Schwerdtfeger P (2000) d- or l-Alanine: that is the question. ChemPhysChem 2000:60–62

    Article  Google Scholar 

  • Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era. Science 201:67–69

    Article  PubMed  CAS  Google Scholar 

  • Lazcano A, Miller SL (1994) How long did it take for life to begin and evolve to cyanoabacteria? J Mol Evol 39:546–554

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Granja JR, Martinez JA, Severin K, Ghadiri MR (1996) A self-replicating peptide. Nature 382:525–528

    Article  PubMed  CAS  Google Scholar 

  • Leman L, Orgel LE, Ghadiri MR (2004) Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306:283–286

    Article  PubMed  CAS  Google Scholar 

  • Leman LJ, Orgel LE, Ghadiri MR (2006) Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide. J Am Chem Soc 128:20–21

    Article  PubMed  CAS  Google Scholar 

  • Lemmon RM (1970) Chemical evolution. Chem Rev 70:95–109

    Article  CAS  Google Scholar 

  • Löb W (1913) Über das Verhalten des Formamids unter der Wirkung der stillen Entladung. Ein Beitrag zur Frage der Stickstoff-Assimilation. Chem Ber 46:684–697

    Article  Google Scholar 

  • Lohrmann R, Bridson PK, Orgel LE (1980) Efficient metal-ion catalysed template-directed oligonucleotide synthesis. Science 208:1464–1465

    Article  PubMed  CAS  Google Scholar 

  • Mansy SS, Schrum JP, Krishnamurty M, Tobé S, Treco DA, Szostak JW (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature 454:122–125

    Article  PubMed  CAS  Google Scholar 

  • Mar A, Oró J (1991) Synthesis of the coenzymes ADP-glucose, GDP-glucose, and CDP-ethanolamine under primitive earth conditions. J Mol Evol 32:201–210

    Article  PubMed  CAS  Google Scholar 

  • McLoughlin N, Brasier MD, Wacey D, Green OR, Perry R (2007) On biogenecity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26

    Article  PubMed  CAS  Google Scholar 

  • Meierhenrich U, Munoz Caro G, Bredehöft JH, Jessberger LK, Thiemann W (2004) Identification of diamino acids in the Murchison meteorite. Proc Natl Acad Sci U S A 101:9182–9186

    Article  PubMed  CAS  Google Scholar 

  • Miescher F (1871) Über die chemische Zusammensetzung der Eiterzellen. Hoppe-Seylers Medizinische-Chemischen Untersuchungen 4:441–460

    Google Scholar 

  • Millar TJ (2004) Organic molecules in the interstellar medium. In: Ehrenfreund P et al (eds) Astrobiology: future perspectives. Kluwer Academic, The Netherlands, pp 17–31

    Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  PubMed  CAS  Google Scholar 

  • Miller SL (1955) Production of some organic compounds under possible primitive earth conditions. J Am Chem Soc 77:2351–2361

    Article  CAS  Google Scholar 

  • Miller SL, Lazcano A (1995) The origin of life—did it occur at high temperature? J Mol Evol 41:689–692

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251

    Article  PubMed  CAS  Google Scholar 

  • Mills DR, Petersen RL, Spiegelman S (1967) An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci U S A 59:217–224

    Article  Google Scholar 

  • Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002) Prebiotic synthesis from CO atmospheres: iImplications for the origin of life. Proc Natl Acad Sci U S A 99:14628–14631

    Article  PubMed  CAS  Google Scholar 

  • Monnard PA, Oberholzer T, Luisi PL (1997) Entrapment of nucleic acids in liposomes. Biochim Biophys Acta 1329:39–50

    Article  PubMed  CAS  Google Scholar 

  • Monod J (1970) Le hasard et la nécessité. Editions du Seuil, Paris; Zufall und Notwendigkeit (1971) Piper-Verlag München; Chance and necessity (1971) Knopf, New York

  • Munoz Caro GM, Meierhenrich U, Schutte WA, Barbier B, Arcones Segovia A, Rosenbauer H, Thiemann W, Brack A, Greenberg JM (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403–406

    Article  PubMed  CAS  Google Scholar 

  • Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93:10268–10273

    Article  PubMed  CAS  Google Scholar 

  • Nelson KE, Levy M, Miller SL (2000) Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci U S A 97:3868–3871

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Erdmann V (1970) Reconstitution of ribosomal subunits from dissociated molecular components. Nature 228:744–748

    Article  PubMed  CAS  Google Scholar 

  • Oberbeck V, Fogleman G (1989) Impacts and the origin of life. Nature 339:434

    Article  PubMed  CAS  Google Scholar 

  • Okihana H, Egami F (1979) Polymers produced by heating an amino acid mixture in sea water enriched with transition elements. Orig Life 9:171–180

    Article  PubMed  CAS  Google Scholar 

  • Oparin AI (1924) Proiskhozdenie zhizny (Origin of Life). Izd. Moskovski Rabochii, Moscow

  • Oparin AI (1936) Origin of life (Moscow, in Russian); (1938, Macmillan, New York, in English)

  • Oparin AI (1957) Die Entstehung des Lebens auf der Erde. VEB Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Orgel LE, Crick HC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  PubMed  CAS  Google Scholar 

  • Otting G, Billeter M, Wüthrich K, Roth HJ, Leumann C, Eschenmoser A (1993) Warum pentose- und nicht hexose-Nucleinsäuren? Teil IV. Helv Chim Acta 76:2701–2755

    Article  CAS  Google Scholar 

  • Paecht-Horowitz M (1976) Clays as possible catalysts for peptide formation in the prebiotic era. Orig Life 7:369–381

    Article  PubMed  CAS  Google Scholar 

  • Paecht-Horowitz M, Eirich FR (1988) The polymerization of amino acid adenylates on sodium montmorillonite with preadsorbed polypeptides. Orig Life Evol Biosph 18:359–387

    Article  PubMed  CAS  Google Scholar 

  • Pasek M (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci U S A 105:853–858

    Article  PubMed  CAS  Google Scholar 

  • Pasek M, Lauretta D (2008) Extraterrestrial flux of potentially prebiotic C, N, and P to the early earth. Orig Life Evol Biosph 38:5–21

    Article  PubMed  CAS  Google Scholar 

  • Penzlin H (2009) The riddle of “life”, a biologist’s critical view. Naturwissenschaften 96:1–23

    Article  PubMed  CAS  Google Scholar 

  • Pfeil E, Ruckert H (1961) Die Bildung von Zuckern aus Formaldehyd unter der Einwirkung von Laugen. Liebigs Ann Chem 641:121–131

    Article  CAS  Google Scholar 

  • Pflug HD, Jaeschke-Boyer H (1979) Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature 280:483–486

    Article  CAS  Google Scholar 

  • Piccirilli JA (1995) RNA seeks its maker. Nature 376:548–549

    Article  PubMed  CAS  Google Scholar 

  • Pizzarello S, Weber AL (2004) Prebiotic amino acids as asymmetric catalysts. Science 303:1151

    Article  PubMed  CAS  Google Scholar 

  • Plankensteiner K, Reiner H, Rode BM (2006) Amino acids on the rampant primordial earth: electric discharges and the hot salty ocean. Mol Divers 10:3–7

    Article  PubMed  CAS  Google Scholar 

  • Porco CC, Baker E, Barbara J, Beurle K, Brahic A, Burns JA, Charnoz S, Cooper N, Dawson DD, Del Genio AD, Denk T, Dones L, Dyunida U, Evans MW, Fussner S, Giese B, Grazier K, Helfenstein P, Ingersoll AP, Jacobson RA, Johnson TV, McEwen A, Murray CD, Neukum G, Owen WM, Perry J, Roatsch T, Spitale J, Squyres S, Thomas P, Tiscareno M, Turtle E, Vasavada AR, Veverka J, Wagner R, West R (2005) Imaging of Titan from the Cassini spacecraft. Nature 434:159–168

    Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  PubMed  CAS  Google Scholar 

  • Rajamani S, Vlassov A, Benner S, Coombs A, Olasagasti F, Deamer D (2008) Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig Life Evol Biosph 38:57–74

    Article  PubMed  CAS  Google Scholar 

  • Reiner H, Plankensteiner K, Fitz D, Rode BM (2006) The possible influence of L-histidine on the origin of the first peptides on the primordial earth. Chem Biodivers 3:611–621

    Article  PubMed  CAS  Google Scholar 

  • Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196

    Article  PubMed  CAS  Google Scholar 

  • Robertson MP, Miller SL (1995) An efficient prebiotic synthesis of cytosine and uracil. Nature 375:772–774

    Article  PubMed  CAS  Google Scholar 

  • Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of a nucleotide-binding protein. Nature 250:194–199

    Article  PubMed  CAS  Google Scholar 

  • Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786

    Article  PubMed  CAS  Google Scholar 

  • Rode BM, Schwendinger MG (1990) Copper-catalyzed amino acid condensation in water—a simple way of prebiotic peptide formation. Orig Life Evol Biosph 20:401–410

    Article  CAS  Google Scholar 

  • Rohlfing DL (1976) Thermal polyamino acid synthesis at less than 100°C. Science 193:68–70

    Article  PubMed  CAS  Google Scholar 

  • Russell MJ, Daniel RM, Hall AJ, Sherringham JA (1994) A hydrothermically precipitated iron sulphide membrane as a first step towards life. J Mol Evol 39:231–243

    Article  CAS  Google Scholar 

  • Sagan C, Chyba C (1997) The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221

    Article  PubMed  CAS  Google Scholar 

  • Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318

    Article  CAS  Google Scholar 

  • Schoning K, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A (2000) Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′–2′)oligonucleotide system. Science 290:1347–1351

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archaen apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (1999) Cradle of life. Earth’s earliest fossils. Princeton University Press, Princeton

    Google Scholar 

  • Schrauzer GN, Strampach N, Hui LN, Palmer MR, Salehi J (1983) Nitrogen photoreduction on desert sands under sterile conditions. Proc Natl Acad Sci U S A 80:3873–3876

    Article  PubMed  CAS  Google Scholar 

  • Schwendinger MG, Rode BM (1992) Investigations on the mechanism of salt-induced peptide formation. Orig Life Evol Biosph 22:349–359

    Article  PubMed  CAS  Google Scholar 

  • Seel F, Schinnerling F (1978) Die Cyanat-induzierte Umwandlung von Calciumhydrogen-phosphat in Calciumdiphosphat—eine präbiotische Schlüsselreaktion? Z Naturforsch 33b:373–376

    Google Scholar 

  • Seel F, Klos KP, Schuh J (1985) Hydrothermale Kondensation von Magnesiumhydrogen-phosphaten zu Magnesiumdiphosphaten. Naturwissenschaften 72:658

    Article  CAS  Google Scholar 

  • Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by asteroid impacts on the early Earth. Nature 342:139–142

    Article  PubMed  CAS  Google Scholar 

  • Spaargaren DH (1985) Origin of life: oceanic genesis, panspermia, or Darwin’s warm little pond? Experientia 41:719–727

    Article  CAS  Google Scholar 

  • Strobel SA, Doudna JA (1997) RNA seeing double: close-packing of helices in RNA tertiary structure. Trends Biochem Sci 22:262–265

    Article  PubMed  CAS  Google Scholar 

  • Stubbe JA, Ge J, Yee CS (2001) The evolution of ribonucleotide reduction revisited. Trends Biochem Sci 26:93–99

    Article  PubMed  CAS  Google Scholar 

  • Thiemann W (ed) (1981) Generation and amplification of chirality in chemical systems. Origins of life, vol 11. Reidel, Dordrecht

  • Tian F, Toon OB, Pavlov AA, de Sterck H (2005) A hydrogen-rich early earth atmosphere. Science 308:1014–1017

    Article  PubMed  CAS  Google Scholar 

  • Tranter GE (1985) Parity-violating differences of chiral minerals and the origin of biomoleculae homochirality. Nature 318:172–173 (1986) Paritätsverletzung: Ursache der biomolekularen Chiralität. Nachr Chem Tech Lab 34:867–870

    Article  CAS  Google Scholar 

  • Tranter GE (1986) Preferential stabilization of the d-sugar series by the parity-violating weak interactions. J Chem Soc Chem Comm 1986:60–61

    Article  Google Scholar 

  • Unrau PJ, Bartel DP (1998) RNA-catalyzed nucleotide synthesis. Nature 395:260–263

    Article  PubMed  CAS  Google Scholar 

  • Urey HC (1952) On the early chemical history of the earth and the origin of life. Proc Natl Acad Sci U S A 38:351–363

    Article  PubMed  CAS  Google Scholar 

  • Usher DA (1977) Early chemical evolution of nucleic acids. Science 196:311–313

    Article  PubMed  CAS  Google Scholar 

  • Voet AB, Schwartz AW (1983) Prebiotic adenine synthesis from HCN. Evidence for a newly discovered major pathway. Bioorg Chem 12:8–17

    Article  CAS  Google Scholar 

  • Wächtershäuser G (1988) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microbiol 10:207–210

    Google Scholar 

  • Wächtershäuser G (2000) Life as we don’t know it. Science 289:1307–1308

    Article  PubMed  Google Scholar 

  • Waldrop MM (1989) Did life really start out in an RNA world? Science 246:1248–1249

    Article  PubMed  CAS  Google Scholar 

  • Walsh C (2001) Enabling the chemistry of life. Nature 409:226–231

    Article  PubMed  CAS  Google Scholar 

  • Weber AL (1992) Prebiotic sugar synthesis: hexose and hydroxy acid synthesis from glyceraldehyde catalyzed by iron(III) hydroxide oxide. J Mol Evol 35:1–6

    Article  PubMed  CAS  Google Scholar 

  • Weber AL, Miller SL (1981) Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol 17:273–284

    Article  PubMed  CAS  Google Scholar 

  • Weber P, Greenberg JM (1985) Can spores survive in interstellar space? Nature 316:403–407

    Article  CAS  Google Scholar 

  • Whitfield J (2004) Born in a watery commune. Nature 427:674–676

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1998) The universal ancestor. Proc Natl Acad Sci U S A 95:6854–6859

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci U S A 97:8392–8396

    Article  PubMed  CAS  Google Scholar 

  • Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci U S A 72:1909–1912

    Article  PubMed  CAS  Google Scholar 

  • Wiechert UH (2002) Earth’s early atmosphere. Science 298:2341–2342

    Article  PubMed  CAS  Google Scholar 

  • Yamagata Y, Watanabe H, Saito M, Namba T (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Peritz A, Meggers E (2005) A simple glycol nucleic acid. J Am Chem Soc 127:4174–4175

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman B (1977) Interstellar molecules. Nature 268:491–495

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vivid discussions with colleagues and friends, in particular Horst-Dieter Försterling, Peter Kaiser, Hans Kuhn, Ulrich Kutschera, Stanley Miller (deceased; La Jolla, CA, USA), Klaus-Heinrich Röhm, and Günter Wächtershäuser are greatly appreciated. The students attending summer academies on evolution at La Villa and Alpbach (Tyrol), sponsored by Studienstiftung, contributed many critical questions and stimulating ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Follmann.

Additional information

This contribution is part of the Special Issue “Beyond the Origin: Charles Darwin and modern biology”. Guest editor: U. Kutschera (see Kutschera 2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Follmann, H., Brownson, C. Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften 96, 1265–1292 (2009). https://doi.org/10.1007/s00114-009-0602-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0602-1

Keywords

Navigation