Skip to main content
Log in

Preservation of ancient DNA in thermally damaged archaeological bone

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Evolutionary biologists are increasingly relying on ancient DNA from archaeological animal bones to study processes such as domestication and population dispersals. As many animal bones found on archaeological sites are likely to have been cooked, the potential for DNA preservation must be carefully considered to maximise the chance of amplification success. Here, we assess the preservation of mitochondrial DNA in a medieval cattle bone assemblage from Coppergate, York, UK. These bones have variable degrees of thermal alterations to bone collagen fibrils, indicative of cooking. Our results show that DNA preservation is not reliant on the presence of intact collagen fibrils. In fact, a greater number of template molecules could be extracted from bones with damaged collagen. We conclude that moderate heating of bone may enhance the retention of DNA fragments. Our results also indicate that ancient DNA preservation is highly variable, even within a relatively recent assemblage from contexts conducive to organic preservation, and that diagenetic parameters based on protein diagenesis are not always useful for predicting ancient DNA survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barnes I, Young JPW, Dobney KM (2000) DNA-based identification of goose species from two archaeological sites in Lincolnshire. J Archaeol Sci 27:91–100. doi:10.1006/jasc.1999.0440

    Article  Google Scholar 

  • Bell LS, Skinner MF, Jones SJ (1996) The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Sci Int 82:129–140. doi:10.1016/0379-0738(96)01984-6

    Article  PubMed  CAS  Google Scholar 

  • Bollongino R, Edwards CJ, Alt KW, Burger J, Bradley DG (2006) Early history of European domestic cattle as revealed by ancient DNA. Biol Lett 2:155–159. doi:10.1098/rsbl.2005.0404

    Article  PubMed  CAS  Google Scholar 

  • Briggs AW, Stenzel U, Johnson PL, Green RE, Kelso J, Prüfer K, Meyer M, Krause J, Ronan MT, Lachmann M, Pääbo S (2007) Patterns of damage in genomic DNA sequences from a Neanderthal. Proc Natl Acad Sci U.S.A. 104:14616–14621. doi:10.1073/pnas.0704665104

    Article  PubMed  CAS  Google Scholar 

  • Brotherton P, Endicott P, Sanchez JJ, Beaumont M, Barnett R, Austin J, Cooper A (2007) Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions. Nucleic Acids Res 35:5717–57128. doi:10.1093/nar/gkm588

    Article  PubMed  CAS  Google Scholar 

  • Buckley M, Walker A, Ho SY, Yang Y, Smith C, Ashton P, Oates JT, Cappellini E, Koon H, Penkman K, Elsworth B, Ashford D, Solazzo C, Andrews P, Strahler J, Shapiro B, Ostrom P, Gandhi H, Miller W, Raney B, Zylber MI, Gilbert MT, Prigodich RV, Ryan M, Rijsdijk KF, Janoo A, Collins MJ (2008) Comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry”. Science 319:33. doi:10.1126/science.1147046

    Article  PubMed  CAS  Google Scholar 

  • Budowle B, Moretti T, Smith J, Dizinno J (2000) DNA typing protocols: molecular biology and forensic analysis. Eaton, Natick

    Google Scholar 

  • Colgan S, O’Brien L, Maher M, Shilton N, McDonnell K, Ward S (2001) Development of a DNA-based assay for species identification in meat and bone meal. Food Res Int 34:409–414. doi:10.1016/S0963-9969(00)00185-X

    Article  CAS  Google Scholar 

  • Colson IB, Bailey JB, Vercauteren M, Sykes B, Hedges R (1997) The preservation of Ancient DNA and bone diagenesis. Ancient Biomol 1:109–117

    CAS  Google Scholar 

  • Cooper A (1992) Removal of colourings, inhibitors of PCR, and the carrier effect of PCR contamination from ancient DNA samples. Anc DNA Newslett 1:31–32

    Google Scholar 

  • Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289:1139. doi:10.1126/science.289.5482.1139b

    Article  PubMed  CAS  Google Scholar 

  • Deagle B, Eveson JP, Jarman S (2006) Quantification of damage in DNA recovered from highly degraded samples—a case study on DNA in faeces. Front Zool 3:11. doi:10.1186/1742-9994-3-11

    Article  PubMed  Google Scholar 

  • Edwards CJ, MacHugh DE, Keith M, Dobney KM, Martin L, Russell N, Horwitz KL, McIntosh SK, MacDonald KC, Helmer D, Tresset A, Vigne JD, Bradley DG (2004) Ancient DNA analysis of 101 cattle remains: limits and prospects. J Archaeol Sci 31:695–710. doi:10.1016/j.jas.2003.11.001

    Article  Google Scholar 

  • Edwards CJ, Bollongino R, Scheu A, Chamberlain A, Tresset A, Vigne JD, Baird JF, Larson G, Ho SY, Heupink TH, Shapiro B, Freeman AR, Thomas MG, Arbogast RM, Arndt B, Bartosiewicz L, Benecke N, Budja M, Chaix L, Choyke AM, Coqueugniot E, Döhle HJ, Göldner H, Hartz S, Helmer D, Herzig B, Hongo H, Mashkour M, Ozdogan M, Pucher E, Roth G, Schade-Lindig S, Schmölcke U, Schulting RJ, Stephan E, Uerpmann HP, Vörös I, Voytek B, Bradley DG, Burger J (2007) Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proc Biol Sci 274:1377–1385. doi:10.1098/rspb.2007.0020

    Article  PubMed  CAS  Google Scholar 

  • Gilbert MTP, Rudbeck L, Willerslev E, Hansen AJ, Smith C, Penkman KE, Prangenberg K, Nielsen-Marsh CM, Jans ME, Arthur P, Lynnerup N, Turner-Walker G, Biddle M, Kjølbye-Biddle B, Collins MJ (2005) Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy. J Archaeol Sci 32:785–793. doi:10.1016/j.jas.2004.12.008

    Article  Google Scholar 

  • Gilbert MT, Binladen J, Miller W, Wiuf C, Willerslev E, Poinar HN, Carlson JE, Leebens-Mack JH, Schuster SC (2006) Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res 35:1–10. doi:10.1093/nar/gkl483

    Article  PubMed  Google Scholar 

  • Götherström A, Anderung C, Hellborg L, Elburg R, Smith C, Bradley DG, Ellegren H (2005) Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe. Proc Biol Sci 272:2345–2350. doi:10.1098/rspb.2005.3243

    Article  PubMed  Google Scholar 

  • Haynes S, Searl JB, Bretman A, Dobney KM (2002) Bone preservation and ancient DNA: the application of screening methods for predicting DNA survival. J Archaeol Sci. 29:585–592. doi:10.1006/jasc.2001.0731

    Article  Google Scholar 

  • Hill RL (1965) Hydrolysis of proteins. Adv Protein Chem 20:37–107

    Article  PubMed  CAS  Google Scholar 

  • Hofreiter M, Jaenicke V, Serre D, Haeseler Av A, Pääbo S (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 29:4793–4799. doi:10.1093/nar/29.23.4793

    Article  PubMed  CAS  Google Scholar 

  • Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Sci 31:87–95. doi:10.1016/j.jas.2003.07.007

    Article  Google Scholar 

  • Kaufman DS, Manley WF (1998) A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quat Sci Rev 17:987–1000. doi:10.1016/S0277-3791(97)00086-3

    Article  Google Scholar 

  • Kemp BM, Smith DG (2005) Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Sci Int 154:53–61. doi:10.1016/j.forsciint.2004.11.017

    Article  PubMed  CAS  Google Scholar 

  • Koon, HEC (2006) Detecting cooked bone in the archaeological record: a study of the thermal stability and deterioration of bone collagen. PhD thesis, University of York

  • Koon HEC, Nicholson RA, Collins MJ (2003) A practical approach to the identification of low temperature heated bone using TEM. J Archaeol Sci 30:1393–1399. doi:10.1016/S0305-4403(03)00034-7

    Article  Google Scholar 

  • Kronick PL, Cooke P (1996) Thermal stabilization of collagen fibers by calcification. Connect Tissue Res 33:275–282. doi:10.3109/03008209609028885

    Article  PubMed  CAS  Google Scholar 

  • Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J, Tresset A, Vigne JD, Edwards CJ, Schlumbaum A, Dinu A, Balaçsescu A, Dolman G, Tagliacozzo A, Manaseryan N, Miracle P, Van Wijngaarden-Bakker L, Masseti M, Bradley DG, Cooper A (2007) Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc Natl Acad Sci USA 104:15276–15281. doi:10.1073/pnas.0703411104

    Article  PubMed  Google Scholar 

  • Leonard JA, Shanks O, Hofreiter M, Kreuz E, Hodges L, Ream W, Wayne RK Fleischer RC (2007) Animal DNA in PCR reagents plagues ancient DNA research. J Arch Sci 34:1361–1366. doi:10.1016/j.jas.2006.10.023

    Article  Google Scholar 

  • Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochem 11:3610. doi:10.1021/bi00769a018

    Article  CAS  Google Scholar 

  • Malmström H, Stora J, Dalen L, Holmlund G, Götherström A (2005) Extensive human DNA contamination in extracts from ancient dog bones and teeth. Mol Biol Evol 22:2040–2047. doi:10.1093/molbev/msi195

    Article  PubMed  Google Scholar 

  • Malmström H, Svensson EM, Gilbert MT, Willerslev E, Götherström A, Holmlund G (2007) More on contamination: the use of asymmetric molecular behaviour to identify authentic ancient human DNA. Mol Biol Evol 24:998–1004. doi:10.1093/molbev/msm015

    Article  PubMed  Google Scholar 

  • Newman ME, Parboosingh SE, Bridgeb PJ, Howard C (2002) Identification of Archaeological Animal Bone by PCR/DNA Analysis. J Archaeol Sci. doi:10.1006/jasc.2001.0688

  • Nicholson RA (1993) A morphological investigation of burnt animal bone and an evaluation of it utility in archaeology. J Archaeol Sci 20:411–428. doi:10.1006/jasc.1993.1025

    Article  Google Scholar 

  • Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, Rabeder G, Krause J, Detter JC, Pääbo S, Rubin EM (2005) Genomic sequencing of Pleistocene cave bears. Science 309:597–600. doi:10.1126/science.1113485 2005

    Article  PubMed  CAS  Google Scholar 

  • O’Connor TP (1989) Bones from Anglo-Scandinavian Levels at 16–22 Coppergate. The Archaeology of York 15 (3). Council for British Archaeology, London

    Google Scholar 

  • Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679. doi:10.1146/annurev.genet.37.110801.143214

    Article  PubMed  Google Scholar 

  • Poinar HN, Stankiewicz AB (1999) Protein preservation and DNA retrieval from ancient tissues. Proc Natl Acad Sci USA 96:8426–8431. doi:10.1073/pnas.96.15.8426

    Article  PubMed  CAS  Google Scholar 

  • Poinar HN, Hoss M, Bada JL, Pääbo S (1996) Amino acid racemization and the preservation of ancient DNA. Science 272:864–866. doi:10.1126/science.272.5263.864

    Article  PubMed  CAS  Google Scholar 

  • Roberts S, Smith C, Millard R, Collins MJ (2002) The taphonomy of cooked bone: characterizing boiling and its physico-chemical effects. Archaeometry 44:485–494. doi:10.1111/1475-4754.t01-1-00080

    Article  CAS  Google Scholar 

  • Rohland N, Hofreiter M (2007) Comparison and optimization of ancient DNA extraction. Biotechniques 42:343–352. doi:10.2144/000112383

    Article  PubMed  CAS  Google Scholar 

  • Salamon M, Tuross N, Arensburg B, Weiner S (2005) Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci USA 102:13783–13788. doi:10.1073/pnas.0503718102

    Article  PubMed  CAS  Google Scholar 

  • Shipman P, Foster GF, Schoeniger M (1984) Burnt bones and teeth: an experimental study of colour, morphology, crystal structure and shrinkage. J Archaeol Sci 11:307–325

    Article  Google Scholar 

  • Smith CI, Chamberlain AT, Riley MS, Stringer C, Collins MJ (2003) The thermal history of human fossils and the likelihood of successful DNA amplification. J Hum Evol 45:203–217. doi:10.1016/S0047-2484(03)00106-4

    Article  PubMed  Google Scholar 

  • Svensson EM, Götherström A, Vretemark M (2008) A DNA test for sex identification in cattle confirms osteometric results. J Arch Sci 35:942–946. doi:10.1016/j.jas.2007.06.021

    Article  Google Scholar 

  • Troy CS, MacHugh DE, Bailey JF, Magee DA, Loftus RT, Cunningham P, Chamberlain AT, Sykes BC, Bradley DG (2001) Genetic evidence for Near-Eastern origins of European cattle. Nature 410(6832):1088–1091. doi:10.1038/35074088

    Article  PubMed  CAS  Google Scholar 

  • Turner-Walker G, Nielsen-Marsh CM, Syversen U, Kars H, Collins MJ (2002) Sub-micron spongiform porosity is the major ultra-structural alteration occurring in archaeological bone. Int J Osteoarchaeol 12:407–414. doi:10.1002/oa.642

    Article  Google Scholar 

  • Zoledziewska M, Gronkiewicz S, Dobosz T (2002) Comparison of various decalcificators in preparation of DNA from human rib bones. Anthropol Rev 65:75–80

    Google Scholar 

Download references

Acknowledgements

We wish to thank Professor O’Connor (University of York) for providing the archaeological samples from Coppergate, York. We thank Dr. Tom Gilbert for his useful advice for designing the qPCR and sequencing reactions. We also thank the European Commission (Marie Curie Mobility Actions; MEIF-CT-2004-0100) and the Ministero dell’Istruzione, dell’Università e della Ricerca (Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale; prot. # 2005057557, allotted to O.R.) for supporting this work as well as NERC (GR9/4760; NERC/S/A/2002/12028) and the Wellcome Trust for supporting the amino acid and collagen analyses and three anonymous referees for their useful comments. The experiments reported in this study comply with the current laws of Italy and the United Kingdom where they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver E. Craig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ottoni, C., Koon, H.E.C., Collins, M.J. et al. Preservation of ancient DNA in thermally damaged archaeological bone. Naturwissenschaften 96, 267–278 (2009). https://doi.org/10.1007/s00114-008-0478-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0478-5

Keywords

Navigation