Skip to main content
Log in

The riddle of “life,” a biologist’s critical view

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

To approach the question of what life is, we first have to state that life exists exclusively as the “being-alive” of discrete spatio-temporal entities. The simplest “unit” that can legitimately be considered to be alive is an intact prokaryotic cell as a whole. In this review, I discuss critically various aspects of the nature and singularity of living beings from the biologist’s point of view. In spite of the enormous richness of forms and performances in the biotic realm, there is a considerable uniformity in the chemical “machinery of life,” which powers all organisms. Life represents a dynamic state; it is performance of a system of singular kind: “life-as-action” approach. All “life-as-things” hypotheses are wrong from the beginning. Life is conditioned by certain substances but not defined by them. Living systems are endowed with a power to maintain their inherent functional order (organization) permanently against disruptive influences. The term organization inherently involves the aspect of functionality, the teleonomic, purposeful cooperation of structural and functional elements. Structures in turn require information for their specification, and information presupposes a source. This source is constituted in living systems by the nucleic acids. Organisms are unique in having a capacity to use, maintain, and replicate internal information, which yields the basis for their specific organization in its perpetuation. The existence of a genome is a necessary condition for life and one of the absolute differences between living and non-living matter. Organization includes both what makes life possible and what is determined by it. It is not something “implanted” into the living beings but has its origin and capacity for maintenance within the system itself. It is the essence of life. The property of being alive we can consider as an emergent property of cells that corresponds to a certain level of self-maintained complex order or organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This cell-as-elementary-organism theorem is not inconsistent with the well-known fact that the totipotency of the zygote gets lost in the descendants of the zygote during the ontogenesis of a multicellular organism. The cells become determined and differentiate into specific types of cells. This differentiation usually results from the differential expression of genes in the cell, i.e., from the differential regulation of transcription, posttranscriptional events, or translation but not from a loss of DNA or irreversible changes in the genome. It is only irreversible in certain types of cells. In many cases, differentiation is reversible under the right environmental circumstances. Transdifferentiation of one differentiated cell type into another type has been shown to occur for instance during regeneration and in cells in tissue culture.

  2. Some living entities—spores of microorganisms, seeds of plants, some lower invertebrates (tardigrades, nematodes etc.)—are able to enter into an ametabolic state of “cryptobiosis” or “latent life” by undergoing a phase of liquid water loss. This process may result directly from evaporation or arise through vitrification promoted by the synthesis of a carbohydrate matrix accompanied by metabolic depression. Finally, metabolism comes close to being fully arrested. In this actively caused state of “frozen life,” the organisms are able to resist extreme environmental condition. In the literature, we find several reports of microorganisms being revived after millions of years from Precambrian or Silurian rocks or salt deposits (Dombrowski 1963; Vreeland et al. 2000). It is, however, still an open question whether those microorganisms are truly long-term survivors, or whether artifacts (contamination) could explain the revivals (Kennedy et al. 1994).

  3. Moreno and Umerez (2000) consider downward causation in terms of formal causation, which they relate to the concept of information. In Aristotelian terms—so the authors—we can say “that DNA molecules are the formal cause of proteins ..., because their specific sequence of nucleotides convey the ìdea or form of the latter.” The informational components of the DNA constraint the lower-level chemical reactions that constitute the cell.

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1995) Molekularbiologie der Zelle. 3. Aufl. VCH Chemie, Weinheim

    Google Scholar 

  • Anderson PW (1972) More is different. Science 177:393–396

    PubMed  CAS  Google Scholar 

  • Bamford DH, Grimes JM, Stuart DJ (2005) What does structure tell us about virus evolution? Curr Opinion Structural Biol 15:655–663

    CAS  Google Scholar 

  • Bapteste E, Brochier C (2004) On the conceptual difficulties in rooting the tree of life. Trends Micobiol 12:9–13

    CAS  Google Scholar 

  • Bereiter-Hahn J, Airas J, Blum S (1997) Supramolecular associations with the cytomatrix and their relevance in metabolic control: Protein synthesis and glycolysis. Zoology 100:1–24

    CAS  Google Scholar 

  • Bertalanffy L v (1932) Theoretische Biologie. 1. Band: Allgemeine Theorie, Physikochemie, Aufbau und Entwicklung des Organismus. Gebr. Borntraeger, Berlin

    Google Scholar 

  • Blair JE, Hedges SB (2005) Molecular phylogeny and divergence of deuterostome animals. Mol Biol Evol 22:2275–2284

    PubMed  CAS  Google Scholar 

  • Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284

    PubMed  CAS  Google Scholar 

  • Brücke E (1851) Die Elementarorganismen. Sitzungsber Kgl Akad Wissensch in Wien, Mathem.-Naturwiss. Klasse 44:381–466

    Google Scholar 

  • Butterfield NJ, Knoll AH, Swett K (1990) A bangiophyte red alga from the proterozoic of arctic Canada. Science 250:104–107

    PubMed  CAS  Google Scholar 

  • Campbell DT (1974) Downward causation in hierarchically organized biological systems. In: Ayala F, Dobzhansky T (eds) Studies in the philosophy of biology. University of California Press, Berkeley, pp 179–186

    Google Scholar 

  • Capra F (1988) Wendezeit. Bausteine für ein neues Weltbild. Droemersche Verlagsanstalt Knaur Nachf., München

    Google Scholar 

  • Cramer F (1993) Chaos and order. The complex structure of living systems. VCH, Weinheim

    Google Scholar 

  • Crick F (1966) Of molecules and man. Univ. of Washington Press, Seattle

    Google Scholar 

  • Crick F (1968) The origin of the genetic code. J Mol Biol 38:367–379

    PubMed  CAS  Google Scholar 

  • Deckert G et al (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    PubMed  CAS  Google Scholar 

  • Dombrowski HJ (1963) Bacteria from palaeozoic salt deposits. Ann NY Acad Sci 108:453–460

    PubMed  CAS  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128

    PubMed  CAS  Google Scholar 

  • Eigen M (1987) Stufen zum Leben. Die frühe Evolution im Visier der Molekularbiologie. Piper Verlag, München

    Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    PubMed  CAS  Google Scholar 

  • Feynman RP, Leighton RB, Sands M (1989) Lectures of physics, vol.1. California Institute Technology, Pasadena, CA

    Google Scholar 

  • Fong P (1968) Phenomenology theory of life. J Theor Biol 21:133–152

    PubMed  CAS  Google Scholar 

  • Forterre P, Philippe H (1999) Where is the root of the universal tree of life? Bioessays 21:871–879

    PubMed  CAS  Google Scholar 

  • Freeland SJ, Hurst LD (1998) The genetic code is one in million. J Mol Evol 47:238–248

    PubMed  CAS  Google Scholar 

  • Freeland SJ, Wu T, Keulmann N (2003) The case for an error minimising standard genetic code. Orig life 33:457–477

    CAS  Google Scholar 

  • Gil R, Silva FJ, Peretó J, Moya A (2004) Determination of the core of a minimal bacteria gene set. Microbiol Mol Biol Rev 68:518–537

    PubMed  CAS  Google Scholar 

  • Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability and fluctuations. Wiley, New York

    Google Scholar 

  • Glass JI et al (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103:425–430

    PubMed  CAS  Google Scholar 

  • Gogarten JP (1995) The early evolution of cellular life. Trends Ecol Evol 10:147–151

    Google Scholar 

  • Gogarten JP, Taiz L (1992) Evolution of proton pumping ATPases: rooting the tree of life. Photosynth Res 33:137–146

    CAS  Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    PubMed  CAS  Google Scholar 

  • Haldane JS (1922) Respiration. New Haven, London, Oxford

    Google Scholar 

  • Haldane JBS (1929) The origin of life. The Rationalist Annual 148:3–10, (reprinted in: Bernal JD, 1967)

    Google Scholar 

  • Hall TS (1969) History of general physiology, 2 vols. Univ. Chicago Press, Chicago

    Google Scholar 

  • Hayes JM (1996) The earliest memories of life on earth. Nature 384:21–22

    PubMed  CAS  Google Scholar 

  • Heidenhain M (1894) Neue Untersuchungen über die Centralkörper und ihre Beziehungen zum Kern und Zellenprotoplasma. Arch Mikroskop Anat 43:423–758

    Google Scholar 

  • Hertwig O (1906) Allgemeine Biologie. Fischer Verlag, Jena

    Google Scholar 

  • Hess B, Boitew A (1971) Oscillatory phenomena in biochemistry. Ann Rev Biochem 40:237–258

    PubMed  CAS  Google Scholar 

  • Hess B, Goldbeter A, Lefever R (1978) Temporal, spatial, and functional order in regulated biochemical and cellular systems. In: Rice SA (ed) Advances in chemical physics 38. Wiley, New York, pp 363–413

    Google Scholar 

  • Hou L, Luby-Phelps K, Lanni F (1990) Brownian motion of inert tracer macromolecules in polymerized and spontaneously bundled mixtures of actin and filamin. J Cell Biol 110:1645–1654

    PubMed  CAS  Google Scholar 

  • Hull DL (1974) Philosophy of biological science. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Hulswit M (2006) How causal is downward causation? J Gen Philosophy of Science 36:261–287

    Google Scholar 

  • Islas S, Becerra A, Luisi PL, Lazcano A (2004) Comparative genomics and the gene complement of a minimal cell. Orig Life Evol Bioph 34:243–256

    CAS  Google Scholar 

  • Jacob F (1982) The possible and the actual. Pantheon, New York

    Google Scholar 

  • Jacob F (1993) The logic of life. A history of heredity. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Jantsch E (1984) Die Selbstorganisation des Universums. Vom Urknall zum menschlichen Geist. 2. Aufl., Deutscher Taschenbuch Verlag, München

  • Joyce GF (1987) Cold Spring Harbor Symp Quant Biol 52

  • Joyce GF, Orgel LE (1986) J Mol Biol 188:433–437

    PubMed  CAS  Google Scholar 

  • Joyce GF, Orgel LE (1993) Prospects for understanding the origin of the RNA world. In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Habor Laboratory Press, New York, pp 1–25

    Google Scholar 

  • Kacser H, Burns JA (1979) Molecular democracy: who shares the controls? Biochem Soc Trans 7:1149–1160

    PubMed  CAS  Google Scholar 

  • Kant I (1790) Kritik der Urtheilskraft. Lagarde und Friederich, Berlin und Libau (quoted from: Cambridge Edition of the Works of Immanuel Kant, edited by Paul Guyer and Allen W. Wood. Cambridge Univ. Press, Cambridge 1992)

  • Kaplan RW (1972) Der Ursprung des Lebens. Biogenetik, ein Forschungsgebiet heutiger Naturwissenschaft. Georg Thieme, Stuttgart

  • Kaufmann SA (1993) The origin of order: Self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  • Kaufmann S (1996) Even peptides do it. Nature 382:496–497

    Google Scholar 

  • Kay LE (2000) Who wrote the book of life? Stanford Univ. Press, Stanford, CA

    Google Scholar 

  • Kelso JAS, Haken H (1997) Im Organismus sind neue Gesetze zu erwarten. Synergetik von Gehirn und Verhalten. In: Murphy MP, O’Neill LAJ (eds) Was ist Leben? Die Zukunft der Biologie. Spektrum Akademischer Verlag, Heidelberg, pp 157–182

    Google Scholar 

  • Kennedy MJ, Reader SL, Swierczynski LM (1994) Preservation records of microorganisms: Evidence of the tenacity of life. Microbiol 140:2513–2529

    Article  Google Scholar 

  • Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654

    PubMed  CAS  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient virus world and evolution of cells. Biology Direct 2006:1–27

    Google Scholar 

  • Koshland DE (1987) Switches, thresholds and ultrasensitivity. Trends Biochem Sci 12:225–229

    CAS  Google Scholar 

  • Kratky KW (1990) Der Paradigmenwechsel von der Fremd- zur Selbstorganisation. In: Kratky KW, Wallner F (eds) Grundprinzipien der Selbstorganisation. Wissensch. Buchgesellschaft, Darmstadt, pp 3–17

    Google Scholar 

  • Kuhn TS (1962) The structure of scientific revolutions. Univ. of Chicago Press, Chicago, IL

    Google Scholar 

  • Kuhn H, Waser J (1982) Selbstorganisation der Materie und Evolution früher Formen des Lebens. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik, 2. Aufl. Springer, Berlin, pp 860–905

    Google Scholar 

  • Kutschera U (2006) Constantin S. Merezhkowsky (1855–1921) und die Endosymbiontentheorie der Zellevolution. Biologen heute 1:11–15

    Google Scholar 

  • Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24

    PubMed  CAS  Google Scholar 

  • Laczano A (1993) In: Bengston S (ed) Early life on earth. Nobel Symposium No. 84, Columbio University Press, pp 59–80

  • Lamarck J de (1815) Histoire naturelle des animaux sans vertebras, vol. 1, Paris

  • Langton CG (1995) Editor’s introduction. In: Artificial life. An overview. MIT Press, Cambridge, MA

  • Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: Implications for chemical evolution. Proc Natl Acad Sci USA 92:8158–8160

    PubMed  CAS  Google Scholar 

  • Lewes GW (1879) Problems of life and mind. Trubner, London

    Google Scholar 

  • Lowentin RC (1992) The dream of the human genome. The New York Review, pp 31–40

  • Luisi PL (1999) Lipid vesicles as possible intermediates in the origin of life. Curr Opin Colloid Interface Sci 4:33–39

    CAS  Google Scholar 

  • Luisi PL, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93:1–13

    PubMed  CAS  Google Scholar 

  • MacLeod RB (1957) Teleology and theory of human behavior. Science 125:477

    PubMed  CAS  Google Scholar 

  • Mahner M, Bunge M (1997) Foundation of biophilosophy. Springer, Heidelberg

    Google Scholar 

  • Maier U-G, Hofmann CJB, Sitte P (1996) Die Evolution von Zellen. Naturwissenschaften 83:103–112

    PubMed  CAS  Google Scholar 

  • Mayr E (1979) Evolution und die Vielfalt des Lebens. Springer, Berlin

    Google Scholar 

  • Mill JS (1843) A system of logic. Longmans, Green and Co., London 1859

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    PubMed  CAS  Google Scholar 

  • Mills DR, Petersen RL, Spiegelman S (1967) An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc Nat Acad Sci USA 58:217

    PubMed  CAS  Google Scholar 

  • Monod J (1972) Chance and necessity. An Essay on the natural philosophy of modern biology. Vintage books, New York

    Google Scholar 

  • Moreno A, Umerez J (2000) Downward causation at the core of living organization. In: Andersen PB, Emmeche C, Finnemann NO, Christiansen PV (eds) Downward causation: minds, bodies and matter. Aarhus Univ Press, Aarhus, pp 99–117

    Google Scholar 

  • Morowitz HJ (1967) Biological self-replicating systems. Prog Theor Biol 1:35–58

    Google Scholar 

  • Nicholls DG, Ferguson SJ (1992) Bioenergetics. Academic, London

    Google Scholar 

  • Oparin AJ (1924) The origin of life (Russian). Moscow (translated in: Bernal JD (1967) The origin of life. London. Deutsch: Die Entstehung des Lebens auf der Erde. 3. Aufl. Dtsch Verlag der Wissenschaften, Berlin 1957

  • Oparin AI (1961) Life: its nature, origin and development. Academic, New York

    Google Scholar 

  • Ostwald W (1926) Zur biologischen Grundlegung der Inneren Medizin. Medizinisch-Biologische Schriftenreihe, Heft 1, Radebeul, pp 5–27

  • Penzlin H (1987) Das Teleologie-Problem in der Biologie. Biol Rundschau 25:7–26

    Google Scholar 

  • Penzlin H (1988) Ordnung- Organisation - Organismus. Zum Verhältnis zwischen Physik und Biologie. Sitzungsber. der Sächsischen Akad. d. Wissenschaften zu Leipzig. Math.-Naturwiss. Klasse Bd. 120, Heft 6. Akademie Verlag, Berlin

  • Penzlin H (1993a) Was ist Theoretische Biologie? Biol Zbl 112:100–107

    Google Scholar 

  • Penzlin H (1993b) Selbstorganisation—Paradigma oder Metapher biologischer Strukturbildung? In: Becker V, Schipperges H (eds) Entropie und Pathogenese. Interdisziplinäres Kolloquium der Heidelberger Akademie der Wissenschaften. Springer, Heidelberg, pp 48–64

    Google Scholar 

  • Penzlin H (2002) Warum das Autopoiese-Konzept Maturanas die Organisation lebendiger Systeme unzutreffend beschreibt. Philos Nat 39:61–87

    Google Scholar 

  • Pflüger E (1875) Beiträge zur Lehre von der Respiration (1): Über die physiologische Verbrennung in den lebendigen Organismen. Pflüger’s Archiv 10:251–269, 641–644

  • Pittendrigh CS (1958) Adaptation, natural selection, and behavior. In: Roe A, Simpson GG (eds) Behavior and evolution. Yale Univ. Press, New Haven, pp 390–416

    Google Scholar 

  • Pittendrigh CS (1993) Temporal organization: Reflection of a Darwinian clock-watcher. Ann Rev Physiol 55:17–54

    Google Scholar 

  • Polanyi M (1968) Life’s irreducible structure. Science 160:1308–1312

    PubMed  CAS  Google Scholar 

  • Prigogine I (1947) Etude thermodynamique des Phenomenes Irreversibles. Desoer, Liege

    Google Scholar 

  • Riedl R (1981) Biologie der Erkenntnis. Die stammesgeschichtlichen Grundlagen der Vernunft. 3. Aufl. Paul Parey, Berlin, Hamburg

    Google Scholar 

  • Rosen R (ed) (1985) Theoretical biology and complexity. Three assays on the natural philosophy of complex systems. Academic Press Inc. Orlando, London

  • Rosen R (1991) Life itself: a comprehensive inquiry into the nature, origin and fabrication of life. Columbia University Press, New York

    Google Scholar 

  • Roux W (1895) Der züchtende Kampf der Theile oder die “Theilauslese” im Organismus. V. Cap. Ueber das Wesen des Organischen. Gesammelte Abhandlungen über Entwicklungsmechanik der Organismen. 1. Band. Wilhelm Engelmann, Leipzig, pp 387–416

  • Rual JF et al (2005) Towards a proteome scale map of the human protein-protein interaction network. Nature 437:1173–1178

    PubMed  CAS  Google Scholar 

  • Russell ES (1945) The directiveness of organic activities. Cambridge University Press, Cambridge

    Google Scholar 

  • Sabater B (2006) Are organisms committed to lower their rates of entropy production? Biosystems 83:10–17

    PubMed  Google Scholar 

  • Schrödinger E (1944) What is life? Cambridge University Press, Cambridge

    Google Scholar 

  • Schwartz RM, Daydoff MO (1978) Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199:395–403

    PubMed  CAS  Google Scholar 

  • Shimkets LJ (1998) Structure and sizes of genomes of the Archaea and Bacteria. In: Bruijn FJ de, Lupskin JR, Weinstock GM (eds) Bacterial genomes: physical structure and analysis. Kluwer, Boston, MA, pp 5–11

    Google Scholar 

  • Simpson GG (1963) Biology and the nature of science. Science 139:81–88

    PubMed  CAS  Google Scholar 

  • Srere DA (1993) Wandering (wonderings) in metabolism. Biol Chem 374:833–842

    CAS  Google Scholar 

  • Stelzl U et al (2005) A human protein–protein interaction network: a source for annotating the proteome. Cell 122:957–968

    PubMed  CAS  Google Scholar 

  • Storch V, Welsch U (2005) Kurzes Lehrbuch der Zoologie. 8. Aufl. Elsevier GmbH, München

    Google Scholar 

  • Thorpe WH (1978) Purpose in the world of chance. Oxford University Press, Oxford

    Google Scholar 

  • Uexküll JV (1928) Theoretische Biologie. 2. Aufl. Springer, Berlin

    Google Scholar 

  • Van Gulick R (1993) Who is in change here? And who’s doing all the work? In: Heil J, Mele A (eds) Mental causation. Oxford Univ Press, Oxford, pp 233–256

    Google Scholar 

  • Verworn M (1903) Die Biogenhypothese. Fischer Verlag, Jena

    Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-years-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    PubMed  CAS  Google Scholar 

  • Wächterhäuser G (1988) Before enzyme and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    Google Scholar 

  • Weismann A (1892) Das Keimplasma—eine Theorie der Vererbung. Gustav Fischer, Jena

    Google Scholar 

  • Wicken JS (1987) Evolution, thermodynamics, and information. Oxford Univ. Press, New York

    Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396

    PubMed  CAS  Google Scholar 

  • Zhaxybayeva O, Lapierre P, Gogarten JP (2005) Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227:53–64

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Penzlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penzlin, H. The riddle of “life,” a biologist’s critical view. Naturwissenschaften 96, 1–23 (2009). https://doi.org/10.1007/s00114-008-0422-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0422-8

Keywords

Navigation