Skip to main content
Log in

Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug–drug interactions. We recently developed methods for high-speed functional screening and quantitative structure–activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed-Belkacem A, Pozza A, Munoz-Martinez F, Bates SE, Castanys S, Gamarro F, Di Pietro A, Pérez-Vicoria JM. (2005) Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res 65:4852–4860

    PubMed  CAS  Google Scholar 

  • Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, et al. (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425

    PubMed  CAS  Google Scholar 

  • Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M (1998) A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58:5337–5339

    PubMed  CAS  Google Scholar 

  • Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  PubMed  CAS  Google Scholar 

  • Bäckström G, Taipalensuu J, Melhus H, Brandstrom H, Svensson AC, Artursson P, Kindmark A (2003) Genetic variation in the ATP-binding cassette transporter gene ABCG2 (BCRP) in a Swedish population. Eur J Pharm Sci 5:359–364

    Article  CAS  Google Scholar 

  • Bailey-Dell KJ, Hassel B, Doyle LA, Ross DD (2001) Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta 1520:234–241

    PubMed  CAS  Google Scholar 

  • Bencharit S, Morton CL, Howard-Williams EL, Danks MK, Potter PM, Redinbo MR (2002) Structural insights into CPT-11 activation by mammalian carboxylesterases. Nat Struct Biol 9:337–342

    Article  PubMed  CAS  Google Scholar 

  • Borst P, Evers R, Kool M, Wijnholds J (1999) The multidrug resistance protein family. Biochim Biophys Acta 1461:347–357

    PubMed  CAS  Google Scholar 

  • Borst P, Oude Elferink R (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  PubMed  CAS  Google Scholar 

  • Bosch TM, Kjellberg LM, Bouwers A, Koeleman BPC, Schellens JHM, Beijnen JH, Smits PHM, Meijerman I (2005) Detection of single nucleotide polymorphisms in the ABCG2 gene in a Dutch population. Am J Pharmacogenomics 5:123–131

    PubMed  CAS  Google Scholar 

  • Bowers AG (1999) Phytophotodermatitis. Am J Contact Dermat 10:89–93

    Article  PubMed  CAS  Google Scholar 

  • Breedveld P, Pluim D, Cipriani G, Wielinga P, van Tellingen, Schinkel AH, Schellens JHM (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (gleevec): implication for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 65:2577–2582

    PubMed  CAS  Google Scholar 

  • Burger H, van Tol H, Boersma AW, Brok M, Wiemer EA, Stoter G, Nooter K (2004) Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104:2940–2942

    Article  PubMed  CAS  Google Scholar 

  • Chen AY, Liu LF (1994) DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34:191–218

    Article  PubMed  CAS  Google Scholar 

  • Chen ZS, Robey RW, Belinsky MG, Shchaveleva I, Ren XQ, Sugimoto Y, Ross DD, Bates SE, Kruh GD (2003) Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-d-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res 14:4048–4054

    Google Scholar 

  • Cooray HC, Janvilisri T, van Veen HW, Hladky SB, Barrand MA (2004) Interaction of the breast cancer resistance protein with plant polyphenols. Biochem Biophys Res Commun 317:269–275

    Article  PubMed  CAS  Google Scholar 

  • Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–1166

    Article  PubMed  CAS  Google Scholar 

  • de Jong FA, Marsh S, Mathijssen RH, King C, Verweij J, Sparreboom A, McLeod HL (2004) ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 17:5889–5894

    Article  Google Scholar 

  • Doyle LA, Ross DD (2003) Multidrug resistance transporter from human MCF-7 breast cancer resistance protein BCRP (ABCG2). Oncogene 22:7340–7358

    Article  PubMed  CAS  Google Scholar 

  • Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670

    Article  PubMed  CAS  Google Scholar 

  • Elkind N, Szentpetery Z, Apati A, Ozvegy-Laczka C, Varady G, Ujhelly O, Szabo K, Homolya L, Varadi A, Buday L, Keri G, Nemet K, Sarkadi B (2005) The multidrug transporter ABCG2 prevents tumor cell death induced by the EGF receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res 65:1770–1777

    PubMed  CAS  Google Scholar 

  • Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58

    Article  PubMed  CAS  Google Scholar 

  • Hegedus T, Orfi L, Seprodi A, Varadi A, Sarkadi B, Keri G (2002) Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MCR1 and MRP1. Biochim Biophys Acta 1587:318–325

    PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  • Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 7:3473–3478

    Article  Google Scholar 

  • Honjo Y, Morisaki K, Huff LM, Robey RW, Hung J, Dean M, Bates SE (2002) Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1). Cancer Biol Ther 6:696–702

    Google Scholar 

  • Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, Buchdunger E, Traxler P (2004) Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 64:2333–2337

    PubMed  CAS  Google Scholar 

  • Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    PubMed  CAS  Google Scholar 

  • Hsiang YH, Liu LF (1988) Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 48:1722–1726

    PubMed  CAS  Google Scholar 

  • Iida A, Saito S, Sekine A, Mishima C, Kitamura Y, Kondo K, Harigae S, Osawa S, Nakamura Y (2002) Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8. J Hum Genet 6:285–310

    Article  Google Scholar 

  • Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, Tsuruo T, Miki Y, Sugimoto Y (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 8:611–616

    Google Scholar 

  • Imai Y, Tsukahara S, Asada S, Sugimoto Y (2004) Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res 64:4346–4352

    PubMed  CAS  Google Scholar 

  • Ishikawa T (1989) ATP/Mg2+-dependent cardiac transport system for glutathione S-conjugates: a study using rat heart sarcolemma vesicles. J Biol Chem 264:1733–17348

    Google Scholar 

  • Ishikawa T (2003) Multidrug resistance: genomics of ABC transporters. In: Cooper DN (ed) Nature Encyclopedia of the Human Genome, vol. 4. Nature Publishing Group, London, pp 154–160

    Google Scholar 

  • Ishikawa T, Hirano H, Onishi Y, Sakurai A, Tarui S (2004b) Functional evaluation of ABCB1 (P-glycoprotein) polymorphisms: high-speed screening and structure- activity relationship analyses. Drug Metab Pharmacokinet 19:1–4

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Ikegami Y, Sano K, Nakagawa H, Sawada S (2005b) Transport mechanism-based drug molecular design: novel camptothecin analogues to circumvent ABCG2-associated drug resistance of human tumor cells. Curr Pharm Des (in press)

  • Ishikawa T, Kasamatsu S, Hagiwara Y, Mitomo H, Kato R, Sumino Y (2003) Expression and functional characterization of human ABC transporter ABCG2 variants in insect cells. Drug Metab Pharmacokinet 18:194–202

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Müller M, Klünemann C, Schaub T, Keppler D (1990) ATP-dependent primary active transport of cysteinyl leukotrienes across rat liver canalicular membrane: the role of glutathione S-conjugate carrier. J Biol Chem 265:19279–19286

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Onishi Y, Hirano H, Oosumi K, Nagakura M, Tarui S (2004c) Pharmacogenomics of drug transporters: a new approach to functional analysis of the genetic polymorphisms of ABCB1 (P-glycoprotein/MDR1). Bio Pharm Bull 27:939–948

    Article  CAS  Google Scholar 

  • Ishikawa T, Sakurai A, Kanamori Y, Nagakura M, Hirano H, Takarada Y, Yamada K, Fukushima K, Kitajima M (2005a) High-speed screening of human ABC transporter function and genetic polymorphisms: new strategies in pharmacogenomics. Methods Enzymol, in press

  • Ishikawa T, Tsuji A, Inui K, Sai Y, Anzai N, Wada M, Endou H, Sumino Y (2004a) The genetic polymorphism of drug transporters: functional analysis approaches. Pharmacogenomics 5:67–99

    Article  PubMed  CAS  Google Scholar 

  • Itoda M, Saito Y, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Suzuki H, Sugiyama Y, Ozawa S, Sawada J (2003) Eight novel single nucleotide polymorphisms in ABCG2/BCRP in Japanese cancer patients administered Irinotecan. Drug Metab Pharmacokinet 18:212–217

    Article  PubMed  Google Scholar 

  • Jitsukawa K, Suizu R, Hidano A (1984) Chlorella photosensitization. New phytophotodermatosis. Int J Dermatol 23:263–268

    PubMed  CAS  Google Scholar 

  • Jonker JW, Buitelaar M, Wagenaar E, van der Valk MA, Scheffer GL, Scheper RJ, Plosch T, Kuipers F, Oude Elferink RPJ, Rosing H, Beijnen JH, Schinkel AH (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 99:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Jonker JW, Merino G, Musters S, van Herwaarden AE, Bolscher E, Wagenaar W, Mesman E, Dale TC, Schinkel AH (2005) The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med 11:127–129

    Article  PubMed  CAS  Google Scholar 

  • Kalow E, Meyer U, Tyndale RF (2001) Pharmacogenomics. Marcel Dekker, Basel, New York

    Google Scholar 

  • Kaneda N, Nagata H, Yokokura T (1990) Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. Cancer Res 50:1715–1720

    PubMed  CAS  Google Scholar 

  • Keppler D, Jedlitschky G, Leier I (1998) Transport function and substrate specificity of multidrug resistance protein. Methods Enzymol 292:607–616

    PubMed  CAS  Google Scholar 

  • Kim RB, Wilkinson GR (2001) Pharmacogenomics of drug transporters. In: Kalow E, Meyer U, Tyndale RF (eds) Pharmacogenomics. Marcel Dekker, New York, Basel, pp 81–108

    Google Scholar 

  • Klein I, Sarkadi B, Váradi A (1999) An inventory of the human ABC proteins. Biochim Biophys Acta 1461:237–262

    PubMed  CAS  Google Scholar 

  • Kobayashi D, Ieiri I, Hirota T, Takane H, Maegawa S, Kigawa J, Suzuki H, Nanba E, Oshimura M, Terakawa N, Otsubo K, Mine K, Sugiyama Y (2005) Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos 1:94–101

    Google Scholar 

  • Kondo C, Suzuki H, Itoda M, Ozawa S, Sawada J, Kobayashi D, Ieiri I, Mine K, Ohtsubo K, Sugiyama Y (2004) Functional analysis of SNP variants of BCRP/ABCG2. Pharm Res 10:1895–1903

    Article  Google Scholar 

  • Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP, Scuetz JD (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cells survival through interaction with heme. J Biol Chem 279:24218–24225

    Article  PubMed  CAS  Google Scholar 

  • Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40:S3–S8

    Article  PubMed  CAS  Google Scholar 

  • Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP (2000) Mechanism of action of camptothecin. Ann NY Acad Sci 922:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ma MK, McLeod ML (2003) Lessons learned from the irinotecan metabolic pathway. Curr Med Chem 1:41–49

    Article  Google Scholar 

  • Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 8:2182–2194

    Google Scholar 

  • Millard TP, Hawk JL (2002) Photosensitivity disorders: cause, effect and management. Am J Clin Dermatol 3:239–246

    PubMed  Google Scholar 

  • Millard TP, Kirk A, Ratnavel R (2004) Cutaneous hyperpigmentation during therapy with hydroxychloroquine. Clin Exp Dermatol 29:92–93

    Article  PubMed  CAS  Google Scholar 

  • Mitomo H, Kato R, Ito A, Kasamatsu A, Ikegami Y, Kii I, Kudo A, Kobatake E, Sumino Y, Ishikawa T (2003) A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: critical role of arginine-482 in methotrexate transport. Biochem J 373:767–774

    Article  PubMed  CAS  Google Scholar 

  • Miyake K, Mickley L, Litman T, Zhan Z, Robey R, Cristensen B, Brangi M, Greenberger L, Dean M, Fojo T, Bates SE (1999) Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 59:8–13

    PubMed  CAS  Google Scholar 

  • Mizuarai S, Aozasa N, Kotani H (2004) Single nucleotide polymorphisms result in impaired membrane localization and reduced ATPase activity in multidrug transporter ABCG2. Int J Cancer 2:238–246

    Article  CAS  Google Scholar 

  • Morisaki K, Robey RW, Özvegy-Laczka C, Honjo Y, Polgar O, Steadman K, Sarkadi B, Bates S (2005) Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother Pharmacol 56:161–172

    Article  PubMed  CAS  Google Scholar 

  • Nakatomi K, Yoshikawa M, Oka M, Ikegami Y, Hayasaka S, Sano K, Shiozawa K, Kawataba S, Soda H, Ishikawa T, Tanabe S, Kohno S (2001) Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochem Biophys Res Commun 4:827–832

    Article  CAS  Google Scholar 

  • Noble MEM, Endicott JA, Johnson LN. (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303:1800–1805

    Article  PubMed  CAS  Google Scholar 

  • Özvegy C, Varadi A, Sarkadi B (2002) Characterization of drug transport, ATP hydrolysis, and nucleotide trapping by the human ABCG2 multidrug transporter. Modulation of substrate specificity by a point mutation. J Biol Chem 50:47980–47990

    Article  Google Scholar 

  • Özvegy-Laczka C, Hegedus T, Varady G, Ujhelly O, Schuetz JD, Varadi A, Keri G, Orfi L, Nemet K, Sarkadi B (2004) High affinity interaction of tyrosine kinase inhibitors with ABCG2 multidrug transporter. Mol Pharmacol 65:1485–1495

    Article  PubMed  Google Scholar 

  • Özvegy-Laczka C, Köblös G, Sarkadi B, Varadi A (2005) Single amino acid (482) variants of the ABCG2 multidrug transporter: major differences in transport capacity and substrate recognition. Biochim Biophys Acta 1668:53–63

    PubMed  Google Scholar 

  • Pirmohamed M (2001) Pharmacogenetics and pharmacogenomics. Br J Clin Pharmacol 4:345–347

    Article  Google Scholar 

  • Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM (2000) Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60:47–50

    PubMed  CAS  Google Scholar 

  • Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WGJ (1998) Crystal structure of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279:1504–1513

    Article  PubMed  CAS  Google Scholar 

  • Salerno R, Lesko LJ (2004a) Pharmacogenomics in drug development and regulatory decision-making: the genomic data submission. Pharmacogenomics 5:25–30

    Article  PubMed  Google Scholar 

  • Salerno R, Lesko LJ (2004b) Pharmacogenomic data: FDA volutanry and required submission guidance. Pharmacogenomics 5:503–505

    Article  PubMed  Google Scholar 

  • Sarkadi B, Ozvegy-Laczka C, Nemet K, Varadi A (2004) ABCG2, a transporter for all seasons. FEBS Lett 567:116–120

    Article  PubMed  CAS  Google Scholar 

  • Schellens JH, Creemers GJ, Beijnen JH, de Rosing H, Boer-Dennert M, McDonald M, Davies E, Verweij J (1996) Bioavailability and pharmacokinetics of oral topotecan: a new topoisomerase I inhibitor. Br J Cancer 73:1268–1271

    PubMed  CAS  Google Scholar 

  • Schellens JH, Maliepaard M, Scheper RJ, Scheffer GL, Jonker JW, Smit JW, Beijnen JH, Schinkel AH (2000) Transport of topoisomerase I inhibitors by the breast cancer resistance protein. Potential clinical implications. Ann N Y Acad Sci 922:188–194

    Article  PubMed  CAS  Google Scholar 

  • Schmitz G, Langmann T, Heimerl S (2001) Role of ABCG1 and other ABCG family members in lipid metabolism. J Lipid Res 42:1513–1520

    PubMed  CAS  Google Scholar 

  • Service RF (2004) Surviving the blockbuster syndrome. Science 303:1796–1799

    Article  PubMed  Google Scholar 

  • Sesink ALA, Arts ICW, de Boer VCJ, Breedveld P, Schellens JHM, Hollman PCH, Russel FGM (2005) Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides. Mol Pharmacol 67:1999–2006

    Article  PubMed  CAS  Google Scholar 

  • Shiozawa K, Oka M, Soda H, Yoshikawa M, Ikegami Y, Tsurutani J, Nakatomi K, Nakamura Y, Doi S, Kitazaki T, Muzuta Y, Murase K, Yoshida H, Ross DD, Kohno S. (2004) Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. Int J Cancer 108:146–151

    Article  PubMed  CAS  Google Scholar 

  • Sparreboom A, Gelderblom H, Marsh S, Ahluwalia R, Obach R, Principe P, Twelves C, Verweij J, McLeod HL (2004) Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clin Pharmacol Ther 1:38–44

    Article  CAS  Google Scholar 

  • Stewart CF, Leggas M, Schuetz JD, Panetta JC, Cheshire PJ, Peterson J, Daw N, Jenkins JJ III, Gilbertson R, Germain GS, Harwood FC, Houghton PJ (2004) Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res 64:7491–7499

    PubMed  CAS  Google Scholar 

  • Stewart L, Redinbo MR, Qiu X, Hol WGJH, Champoux JJ (1998) A model for the mechanism of human topoisomerase I. Science 279:1534–1541

    Article  PubMed  CAS  Google Scholar 

  • Szuromi P, Vinson V, Marshall E (2004) Rethinking drug discovery. Science 303:1796–1799

    Article  PubMed  Google Scholar 

  • Takahashi T, Nakai K, Doi T, Yasunaga M, Nakagawa H, Ishikawa T (2005) Synthesis and evaluation of 3D templates based on a taxane skeleton to circumvent P-glycoprotein-associated multidrug resistance of cancer. Bioorg Med Chem 15:2601–2605

    Article  CAS  Google Scholar 

  • Taylor JG, Choi EH, Foster CB, Chanock SJ (2001) Using genetic variation to study human disease. Trends Mol Med 11:507–512

    Article  Google Scholar 

  • Vanhoefer V, Harstrick A, Achterrath W, Cao S, Seeber S, Rustum YM (2001) Irinotecan in the treatment of colorectal cancer: clinical overview. J Clin Oncol 5:1501–1518

    Google Scholar 

  • Varadi A, Tusnady G, Sarkadi B (2003) Membrane topology of the human ABC transporter proteins. In: Holland IB, Cole SPC, Kuchler K, Higgins CF (eds) ABC proteins: from bacteria to man. Academic Press, Amsterdam, pp 37–46

    Google Scholar 

  • Volk EL, Farley KM, Wu Y, Li F, Robey RW, Schneider E (2002) Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 17:5035–5040

    Google Scholar 

  • Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Article  CAS  Google Scholar 

  • Wang N, Lan D, Chen W, Matsuura F, Tall AR (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA 101:9774–9779

    Article  PubMed  CAS  Google Scholar 

  • Yanase K, Tsukahara S, Asada S, Ishikawa E, Imai Y, Sugimoto Y. (2004) Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther 3:1119–1125

    PubMed  CAS  Google Scholar 

  • Yang CH, Chen YC, Kuo ML (2003) Novobiocin sensitizes BCRP/MXR/ABCP overexpressing topotecan-resistant human breast carcinoma cells to topotecan and mitoxantron. Anticancer Res 23:2519–2523

    PubMed  CAS  Google Scholar 

  • Yoshikawa M, Yabuuchi H, Kuroiwa A, Ikegami Y, Sai Y, Tamai I, Tsuji A, Matsuda Y, Yoshida H, Ishikawa T (2002) Molecular and cytogenetic characterization of the mouse ATP-binding cassette transporter abcg4. Gene 293:67–75

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa M, Ikegami Y, Sano K, Yoshida H, Mitomo H, Sawada S, Ishikawa T (2004a) Transport of SN-38 by the wild type of human ABC transporter ABCG2 and its inhibition by quercetin, a natural flavonoid. J Exp Ther Oncol 4:25–35

    PubMed  CAS  Google Scholar 

  • Yoshikawa M, Ikegami Y, Hayasaka S, Ishii K, Ito A, Sano K, Suzuki T, Togawa T, Yoshida H, Soda H, Oka M, Kohno S, Sawada S, Ishikawa T, Tanabe S (2004b) Novel camptothecin analogues that circumvent ABCG2-associated drug resistance in human tumor cells. Int J Cancer 110:921–927

    Article  PubMed  CAS  Google Scholar 

  • Zamber CP, Lamba JK, Yasuda K, Farnum J, Thummel K, Schuetz JD, Schuetz EG (2003) Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 1:19–28

    Article  Google Scholar 

  • Zamboni WC, Bowman LC, Tan M, Santana VM, Houghton PJ, Meyer WH, Pratt CB, Heideman RL, Gajjar AJ, Pappo AS, Stewart CF (1999) Interpatient variability in bioavailability of the intravenous formulation of topotecan given orally to children with recurrent solid tumors. Cancer Chemother Pharmacol 6:454–460

    Article  Google Scholar 

  • Zhang S, Yang X, Morris ME (2004a) Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol Pharmacol 65:1208–1216

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Yang X, Morris ME (2004b) Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm Res 21:1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Schuetz JD, Bunting KD, Colapietro A-M, Sampath J, Morris J, Lagutina I, Grosveld GC, Dsawa M, Nakuchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP (2002) Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantron in hematopoietic cells in vivo. Proc Natl Acad Sci USA 99:12339–12344

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Zong Y, Ney PA, Nair G, Stewart CF, Sorrentino BP (2005) Increased expression of the Abcg2 transporter during erythroid maturation plays a role in decreasing cellular protoporphyrin IX levels. Blood 105:2571–2576

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study performed in the authors’ laboratory was supported, in part, by a research grant entitled “Toxicoproteomics: Expression of ABC transporter genes and drug–drug interactions” (H14-Toxico-002) from the Japanese Ministry of Health and Welfare, a Grant-in-Aid for Creative Scientific Research (no. 13NP0401), and a research grant (No. 14370754) from the Japan Society for the Promotion of Science. The authors thank Drs. Yoji Ikegami and Kazumi Sano (Meiji Pharmaceutical University) as well as Dr. Seigo Sawada (Yakult Central Institute) for their helpful discussion. New SN-analogues were provided from the Yakult Honsha Co., Ltd. (Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihisa Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, T., Tamura, A., Saito, H. et al. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design. Naturwissenschaften 92, 451–463 (2005). https://doi.org/10.1007/s00114-005-0019-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-005-0019-4

Keywords

Navigation