Skip to main content
Log in

Genetische Defekte bei primärer ziliärer Dyskinesie

Genetische Defekte bei primärer ziliärer Dyskinesie

  • Leitthema: Chronische Bronchitis
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Die primäre ziliäre Dyskinesie (PCD) ist genetisch und klinisch heterogen. Sie wird in der Regel autosomal-rezessiv vererbt. Selten sind eine dominante oder X-chromosomal-rezessive Vererbung. Bei Betroffenen führt eine Dysmotilität der Flimmerhärchen (Zilien) zu einer verminderten mukoziliären Reinigung der Atemwege. Dies bedingt das Auftreten chronischer Entzündungen der Atemwege und von Bronchiektasen. Mittels Elektronenmikroskopie können häufig ultrastrukturelle Defekte der inneren oder äußeren Dyneinarme, welche die Zilienbewegung vermitteln, nachgewiesen werden. Rezessive Mutationen der für Dyneinproteine des äußeren Dyneinarms kodierenden Gene DNAI1 (9p13–p21) undDNAH5 (5p15–p14) verursachen PCD und die Randomisierung der Links-rechts-Körperasymmetrie (Situs inversus). Erkrankte weisen ultrastrukturelle Defekte des äußeren Dyneinarms auf. Selten führen Mutationen desRPGR-Gens zu einer X-chromosomal-rezessiv vererbten PCD-Variante. Diese Patienten sind obligat männlich und weisen eine Retinitis pigmentosa und teilweise eine Innenohrschwerhörigkeit auf. Mehrere weitere Genorte konnten für PCD identifiziert werden. Eine molekulargenetische Diagnostik ist aufwändig, führt aber in 10–20% der Fälle zu einem Mutationsnachweis.

Abstract

Primary ciliary dyskinesia (PCD) is a clinically and genetically heterogeneous disorder that is usually inherited as an autosomal recessive disease trait. Very occasionally cases of dominant or X-chromosomal recessive transmission are observed. Dyskinetic cilia cause reduced mucociliary clearance of the airways, resulting in chronic inflammatory processes of the upper and lower respiratory system, often with the development of bronchiectasia. Electron microscopy frequently reveals ultrastructural defects of the inner (IDA) or outer dynein arms (ODA), which are responsible for ciliary bending. Recessive mutations of the DNAI1 (9p13-p21) and DNAH5 (5p15-p14) genes, i.e. those encoding ODA dynein proteins, cause PCD and randomization of left/right body asymmetry. Ultrastructural ODA defects are a constant finding in PCD. In rare instances, mutations of the RPGR gene are responsible for an X-chromosomal recessive PCD variant. Those affected are male: all these patients also suffer from retinitis pigmentosa, and some of them have sensory hearing deficits in addition. Several other gene loci for PCD (19q13.3-qter) have been recognized. Molecular genetic testing in PCD is laborious, but identifies the underlying genetic defect in ~10–20% of cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5a–c
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Ibanez-Tallon I, Heintz N, Omran H (2003) To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet 12:R27–R35

    Article  Google Scholar 

  2. Afzelius BA (1976) A human syndrome caused by immotile cilia. Science 193:317–319

    Google Scholar 

  3. Afzelius BA, Mossberg B (1995) Immotile cilia syndrome (primary ciliary dyskinesia) including Kartagener syndrome. In: Scriver CR, Beaudet AL, Sly WS (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3943–3954

  4. Nonaka S, Tanaka Y, Okada Y et al. (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837

    Article  Google Scholar 

  5. Ibanez-Tallon I, Gorokhova S, Heintz N (2002) Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 11:715–721

    Article  Google Scholar 

  6. Ibanez-Tallon I, Pagenstecher A, Fliegauf M et al. (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13:2133–2141

    Article  Google Scholar 

  7. Hou X, Mrug M, Yoder BK et al. (2002) Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 109:533–540

    Article  Google Scholar 

  8. Pazour GJ, Dickert BL, Vucica Y et al. (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718

    Article  Google Scholar 

  9. El Zein L, Omran H, Bouvagnet P (2003) Lateralization defects and ciliary dyskinesia: lessons from algae. Trends Genet 19:162–167

    Article  Google Scholar 

  10. Blouin JL, Meeks M, Radhakrishna U et al. (2000) Primary ciliary dyskinesia: a genome-wide linkage analysis reveals extensive locus heterogeneity. Eur J Hum Genet 8:109–118

    Article  Google Scholar 

  11. Pennarun G, Escudier E, Chapelin C et al. (1999) Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 65:1508–1519

    Article  Google Scholar 

  12. Meeks M, Walne A, Spiden S et al. (2000) A locus for primary ciliary dyskinesia maps to chromosome 19q. J Med Genet 37:241–244

    Article  Google Scholar 

  13. Omran H, Häffner K, Völkel A et al. (2000) Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Mol Biol 23:696–702

    Google Scholar 

  14. Guichard C, Harricane MC, Lafitte JJ et al. (2001) Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet 68:1030–1035

    Article  Google Scholar 

  15. Zariwala M, Noone PG, Sannuti A et al. (2001) Germline mutations in an intermediate chain dynein cause primary ciliary dyskinesia. Am J Respir Cell Mol Biol 25:577–583

    Google Scholar 

  16. Zariwala M, Kennedy MP, Leigh MW et al. (2004) Mutation analysis of DNAI1 in patients with primary ciliary dyskinesia (PCD). Am J Hum Genet [Suppl] 75:A2497

    Google Scholar 

  17. Olbrich H, Häffner K, Kispert A et al. (2002) Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet 30:143–144

    Article  Google Scholar 

  18. Bartoloni L, Blouin JL, Pan Y et al. (2002) Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci USA 99:10282–10286

    Article  Google Scholar 

  19. van Dorp DB, Wright AF, Carothers AD et al. (1992) A family with RP3 type of X-linked retinitis pigmentosa: an association with ciliary abnormalities. Hum Genet 88:331–334

    Google Scholar 

  20. Dry KL, Manson FD, Lennon A et al. (1999) Identification of a 5′ splice site mutation in the RPGR gene in a family with X-linked retinitis pigmentosa (RP3). Hum Mutat 13:141–145

    Google Scholar 

  21. Zito I, Downes SM, Patel RJ et al. (2003) RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Med Genet 40:609–615

    Article  Google Scholar 

  22. Iannaccone A, Breuer DK, Wang XF et al. (2003) Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. J Med Genet 40:e118

    Article  Google Scholar 

Download references

Danksagung

Für die langjährige Unterstützung des Forschungsprojekts gilt den Betroffenen und der Selbsthilfegruppe für „Primäre Ciliäre Dyskinesie und Kartagener Syndrom e.V.“, wie auch allen zusendenden Pädiatern ein herzlicher Dank. Der Deutschen Forschungsgemeinschaft (DFG Om 6/2) und Michael-Wagner-Stiftung „Kinderlachen“ gilt besonderer Dank für die Förderung des Projekts.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Omran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omran, H. Genetische Defekte bei primärer ziliärer Dyskinesie. Monatsschr Kinderheilkd 153, 246–254 (2005). https://doi.org/10.1007/s00112-005-1095-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-005-1095-4

Schlüsselwörter

Keywords

Navigation