Skip to main content

Advertisement

Log in

Anaplastic lymphoma kinase: an oncogene for tumor vaccination

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The immune system contributes both to the maintenance of cancer in an equilibrium state and to the elimination of tumor cells. Specific antitumor vaccination could increase the intensity or modulate the quality of this immune response against transformed cells. Antitumor vaccination strategies rely upon the identification of one or multiple antigens that can serve to stimulate the immune system. This review will focus particularly on cancer vaccination strategies based on the use of DNA molecules and on the search for antigens that are required for the growth of tumor cells and that cannot be easily down-regulated by the cancer cells (oncoantigens). In addition, we will summarize some results on clinical trials that are currently exploiting selected antigens against tumors and on the recently identified anaplastic lymphoma kinase as a potential oncoantigen for selected types of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALCL:

Anaplastic large cell lymphomas

ALK:

Anaplastic lymphoma kinase

ATIC:

5-Aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase

CNS:

Central nervous system

CTL:

Cytotoxic T lymphocytes

DC:

Dendritic cell

EML4:

Echinoderm microtubule-associated protein-like 4

Her2:

Human epidermal growth factor receptor 2

IFN-γ:

Interferon-gamma

LTK:

Leukocyte tyrosine kinase

MHC:

Major histocompatibility complexes

MUC1:

Mucin 1

NHL:

Non-Hodgkin lymphomas

NPM1:

Nucleophosmin

NSCLCs:

Non-small-cell lung cancers

shRNA:

Short hairpin RNA

siRNA:

Small interfering RNA

TAAs:

Tumor-associated antigens

TGF:

Transforming growth factor

Th:

T helper

TMP3:

Tropomyosin

TYR:

Tyrosinase

References

  1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998

    Article  PubMed  CAS  Google Scholar 

  2. Finn OJ (2008) Cancer immunology. N Engl J Med 358(25):2704–2715

    Article  PubMed  CAS  Google Scholar 

  3. Koebel CM, Vermi W, Swann JB et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450(7171):903–907

    Article  PubMed  CAS  Google Scholar 

  4. Emens LA, Jaffee EM (2005) Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. Cancer Res 65(18):8059–8064

    Article  PubMed  CAS  Google Scholar 

  5. Finn OJ (2006) Human tumor antigens, immunosurveillance, and cancer vaccines. Immunol Res 36(1–3):73–82

    Article  PubMed  CAS  Google Scholar 

  6. Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8(2):108–120

    Article  PubMed  CAS  Google Scholar 

  7. Spiotto MT, Rowley DA, Schreiber H (2004) Bystander elimination of antigen loss variants in established tumors. Nat Med 10(3):294–298

    Article  PubMed  CAS  Google Scholar 

  8. Lollini PL, Cavallo F, Nanni P, Forni G (2006) Vaccines for tumour prevention. Nat Rev Cancer 6(3):204–216

    Article  PubMed  CAS  Google Scholar 

  9. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  PubMed  CAS  Google Scholar 

  10. Hunder NN, Wallen H, Cao J et al (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 358(25):2698–2703

    Article  PubMed  CAS  Google Scholar 

  11. Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129

    Article  PubMed  CAS  Google Scholar 

  12. Bargou R, Leo E, Zugmaier G et al (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321(5891):974–977

    Article  PubMed  CAS  Google Scholar 

  13. Ryan SO, Gantt KR, Finn OJ (2007) Tumor antigen-based immunotherapy and immunoprevention of cancer. Int Arch Allergy Immunol 142(3):179–189

    Article  PubMed  CAS  Google Scholar 

  14. Pejawar-Gaddy S, Finn OJ (2008) Cancer vaccines: accomplishments and challenges. Crit Rev Oncol Hematol 67(2):93–102

    Article  PubMed  Google Scholar 

  15. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8(1):59–73

    Article  PubMed  CAS  Google Scholar 

  16. Lowe DB, Shearer MH, Jumper CA, Kennedy RC (2007) Towards progress on DNA vaccines for cancer. Cell Mol Life Sci 64(18):2391–2403

    Article  PubMed  CAS  Google Scholar 

  17. Haupt K, Roggendorf M, Mann K (2002) The potential of DNA vaccination against tumor-associated antigens for antitumor therapy. Exp Biol Med (Maywood) 227(4):227–237

    CAS  Google Scholar 

  18. Biragyn A, Kwak LW (2000) Designer cancer vaccines are still in fashion. Nat Med 6(9):966–968

    Article  PubMed  CAS  Google Scholar 

  19. Mocellin S, Mandruzzato S, Bronte V, Marincola FM (2004) Cancer vaccines: pessimism in check. Nat Med 10(12):1278–1279 author reply 1279-1280

    Article  PubMed  CAS  Google Scholar 

  20. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    Article  PubMed  CAS  Google Scholar 

  21. Weiner LM (2008) Cancer immunotherapy—the endgame begins. N Engl J Med 358(25):2664–2665

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11(18):6713–6721

    Article  PubMed  CAS  Google Scholar 

  23. Lu S, Wang S, Grimes-Serrano JM (2008) Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 7(2):175–191

    Article  PubMed  CAS  Google Scholar 

  24. Todorova K, Ignatova I, Tchakarov S et al (2005) Humoral immune response in prostate cancer patients after immunization with gene-based vaccines that encode for a protein that is proteasomally degraded. Cancer Immun 5:1

    PubMed  Google Scholar 

  25. Wolchok JD, Yuan J, Houghton AN et al (2007) Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol Ther 15(11):2044–2050

    Article  PubMed  CAS  Google Scholar 

  26. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8(1):11–23

    Article  PubMed  CAS  Google Scholar 

  27. Bilsland JG, Wheeldon A, Mead A et al (2008) Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology 33(3):685–700

    Article  PubMed  CAS  Google Scholar 

  28. Jacobsen E (2006) Anaplastic large-cell lymphoma, T-/null-cell type. Oncologist 11(7):831–840

    Article  PubMed  Google Scholar 

  29. Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566

    Article  PubMed  CAS  Google Scholar 

  30. Chen Y, Takita J, Choi YL et al (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455(7215):971–974

    Article  PubMed  CAS  Google Scholar 

  31. George RE, Sanda T, Hanna M et al (2008) Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455(7215):975–978

    Article  PubMed  CAS  Google Scholar 

  32. Janoueix-Lerosey I, Lequin D, Brugieres L et al (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455(7215):967–970

    Article  PubMed  CAS  Google Scholar 

  33. Mosse YP, Laudenslager M, Longo L et al (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455(7215):930–935

    Article  PubMed  CAS  Google Scholar 

  34. Chin TM, Quinlan MP, Singh A et al (2008) Reduced erlotinib sensitivity of epidermal growth factor receptor-mutant non-small cell lung cancer following cisplatin exposure: a cell culture model of second-line erlotinib treatment. Clin Cancer Res 14(21):6867–6876

    Article  PubMed  CAS  Google Scholar 

  35. McDermott U, Iafrate AJ, Gray NS et al (2008) Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 68(9):3389–3395

    Article  PubMed  CAS  Google Scholar 

  36. Soda M, Takada S, Takeuchi K et al (2008) A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci U S A 105(58):19893–19897

    Article  PubMed  CAS  Google Scholar 

  37. Chiarle R, Gong JZ, Guasparri I et al (2003) NPM–ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101(5):1919–1927

    Article  PubMed  CAS  Google Scholar 

  38. Piva R, Chiarle R, Manazza AD et al (2006) Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood 107(2):689–697

    Article  PubMed  CAS  Google Scholar 

  39. Wan W, Albom MS, Lu L et al (2006) Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells. Blood 107(4):1617–1623

    Article  PubMed  CAS  Google Scholar 

  40. Savage KJ, Harris NL, Vose JM et al (2008) ALK− anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 111(12):5496–5504

    Article  PubMed  CAS  Google Scholar 

  41. Pulford K, Falini B, Banham AH et al (2000) Immune response to the ALK oncogenic tyrosine kinase in patients with anaplastic large-cell lymphoma. Blood 96(4):1605–1607

    PubMed  CAS  Google Scholar 

  42. Passoni L, Scardino A, Bertazzoli C et al (2002) ALK as a novel lymphoma-associated tumor antigen: identification of 2 HLA-A2.1-restricted CD8+ T-cell epitopes. Blood 99(6):2100–2106

    Article  PubMed  CAS  Google Scholar 

  43. Ait-Tahar K, Cerundolo V, Banham AH et al (2006) B and CTL responses to the ALK protein in patients with ALK-positive ALCL. Int J Cancer 118(3):688–695

    Article  PubMed  CAS  Google Scholar 

  44. Passoni L, Gallo B, Biganzoli E et al (2006) In vivo T-cell immune response against anaplastic lymphoma kinase in patients with anaplastic large cell lymphomas. Haematologica 91(1):48–55

    PubMed  CAS  Google Scholar 

  45. Ait-Tahar K, Barnardo MC, Pulford K (2007) CD4 T-helper responses to the anaplastic lymphoma kinase (ALK) protein in patients with ALK-positive anaplastic large-cell lymphoma. Cancer Res 67(5):1898–1901

    Article  PubMed  CAS  Google Scholar 

  46. Chiarle R, Martinengo C, Mastini C et al (2008) The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat Med 14(6):676–680

    Article  PubMed  CAS  Google Scholar 

  47. Timmerman JM, Levy R (2004) Cancer vaccines: pessimism in check. Nat Med 10(12):1279 author reply 1279–1280

    Article  PubMed  CAS  Google Scholar 

  48. Mussolin L, Bonvini P, Ait-Tahar K et al (2009) Kinetics of humoral response to ALK and its relationship with minimal residual disease in pediatric ALCL. Leukemia 23(2):400–402

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministero dell’Università e Ricerca Scientifica (MUR), Ministero della Salute, the Associazione Italiana per la Ricerca sul Cancro (AIRC), the Regione Piemonte, the Compagnia di San Paolo Torino, the Fondazione Cassa di Risparmio di Torino, the Fondazione Guido Berlucchi per la Ricerca sul Cancro, and the National Institutes of Health grant number R01-CA64033 to GI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Chiarle.

Additional information

Cristina Mastini and Cinzia Martinengo equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastini, C., Martinengo, C., Inghirami, G. et al. Anaplastic lymphoma kinase: an oncogene for tumor vaccination. J Mol Med 87, 669–677 (2009). https://doi.org/10.1007/s00109-009-0460-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0460-5

Keywords

Navigation