Skip to main content

Advertisement

Log in

Stimulation of c-Rel transcriptional activity by PKA catalytic subunit β

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Nuclear factor κB (NF-κB) is a eukaryotic transcription factor which responds to different extracellular signals. It is involved in immune response, inflammation, and cell proliferation. Increased expression of c-Rel (or its viral homolog v-Rel), one component of the NF-κB factors, induces tumorigenesis in different systems. The activity of NF-κB can be regulated by protein kinase A (PKA) in a cAMP-independent manner. Our previous results showed that c-MYC induces the activity of PKA by inducing the transcription of the gene encoding the PKA catalytic subunit β (PKA-Cβ). Constitutive expression of PKA-Cβ in Rat1a cells induces their transformation. Here we show that CREB is unlikely to be a phosphorylation target of PKA-Cβ as characterized by different cell lines. Electrophoretic mobility shift assays showed that c-Rel is present as a significant component of the NF-κB factors in c-MYC overexpressing status. The transcriptional activity of c-Rel was significantly stimulated by PKA-Cβ. Coactivators p300/CBP are at least partially responsible for the enhanced activation mediated by c-Rel and PKA-Cβ. Interaction between c-Rel and PKA-Cβ was demonstrated using coimmunoprecipitation assays. Immunoprecipitation-in vitro phosphorylation assays showed the direct phosphorylation of c-Rel by PKA-Cβ. These results indicate that c-Rel is a reasonable phosphorylation target of PKA-Cβ, and that the transcriptional activity of c-Rel is stimulated by PKA-Cβ possibly through the interaction with p300/CBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CBP :

CREB-binding protein

IκB :

Inhibitor factor κB

NF-κB :

Nuclear factor κB

PKA :

Protein kinase A

SDS-PAGE :

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TC :

Tetracycline

References

  1. Ghosh S, May MJ, Kopp EB (1998) NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    CAS  PubMed  Google Scholar 

  2. Gerondakis S, Grumont R, Rouke I, Grossman M (1998) The regulation and roles of Rel/NF-κB transcription factors during lymphocyte activation. Curr Opin Immunol 10:353–359

    Article  CAS  PubMed  Google Scholar 

  3. Mercurio F, Manning AM (1999) Multiple signals converging on NF-κB. Curr Opin Cell Biol 11:226–232

    Google Scholar 

  4. Mayo MW, Baldwin AS (2000) The transcription factor NF-κB: control of oncogenesis and cancer gene therapy. Biochim Biophys Acta 1470:M55–M62

    Article  CAS  PubMed  Google Scholar 

  5. Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947

    Article  CAS  PubMed  Google Scholar 

  6. Hsia CY, Cheng S, Owyang AM, Dowdy SF, Liou HC (2002) c-Rel regulation of the cell cycle in primary mouse B lymphocytes. Int Immunol 14:905–916

    Article  CAS  PubMed  Google Scholar 

  7. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr (1999) NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19:5785–5799

    CAS  PubMed  Google Scholar 

  8. Kalaitzidis D, Davis RE, Rosenwald A, Staudt LM, Gilmore TD (2002) The human B-cell lymphoma cell line RC-K8 has multiple genetic alterations that dysregulate the Rel/NF-κB signal transduction pathway. Oncogene 21:8759–8768

    Article  CAS  PubMed  Google Scholar 

  9. Martin-Subero JI, Gesk S, Harder L, Sonoki T, Tucker PW, Schlegelberger B, Grote W, Novo FJ, Calasanz MJ, Hansmann ML, Dyer MJ, Siebert R (2002) Recurrent involvement of the Rel and Bcl11A loci in classical Hodgkin lymphomas. Blood 99:1474–1477

    Article  CAS  PubMed  Google Scholar 

  10. Ni H, Ergin M, Huang Q, Qin JZ, Amin HM, Martinez RL, Saeed S, Barton K, Alkan S (2001) Analysis of expression of nuclear factor kappa B (NF-κB) in multiple myeloma: downregulation of NF-kB induces apoptosis. Br J Haematol 115:279–286

    Article  CAS  PubMed  Google Scholar 

  11. Gilmore T, Gapuzan ME, Kalaitzidis D, Starczynowski D (2002) Rel/NF-κB/I-κB signal transduction in the generation and treatment of human cancer. Cancer Lett 181:1–9

    Article  CAS  PubMed  Google Scholar 

  12. Gilmore TD, Cormier C, Jean-Jacques J, Gapuzan ME (2001) Malignant transformation of primary chicken spleen cells by human transcription factor c-Rel. Oncogene 20:7098–7103

    Article  CAS  PubMed  Google Scholar 

  13. Romieu-Mourez R, Kim DW, Shin SM, Demicco EG, Landesman-Gollag E, Seldin DC, Cardiff RD, Sonenshein GE (2003) Mouse mammary tumor virus c-rel transgenic mice develop mammary tumors. Mol Cell Biol 23:5738–5754

    Article  CAS  PubMed  Google Scholar 

  14. Dong QG, Sclabas GM, Fujioka S, Schmidt C, Peng B, Wu T, Tsao MS, Evans DB, Abbruzzese JL, McDonnell TJ, Chiao PJ (2002) The function of multiple I-κB: NF-κB complexes induce the resistance of cancer cells to taxol-induced apoptosis. Oncogene 21:6510–6519

    Article  CAS  PubMed  Google Scholar 

  15. Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, Ghosh S (1997) The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89:413–424

    CAS  PubMed  Google Scholar 

  16. Zhong H, Voll RE, Ghosh S (1998) Phosphorylation of NF-κB p65 by PKA stimuates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1:661–671

    CAS  PubMed  Google Scholar 

  17. Wu KJ, Mattioli M, Morse HC III, Dalla-Favera R (2002) c-MYC activates protein kinase A (PKA) by directional transcriptional activation of the PKA catalytic subunit beta (PKA-Cβ) gene. Oncogene 21:7872–7882

    Article  CAS  PubMed  Google Scholar 

  18. Daniel PB, Walker WH, Habener JF (1998) Cyclic AMP signaling and gene regulation. Annu Rev Nutr 18:353–383

    Article  CAS  PubMed  Google Scholar 

  19. Taylor SS, Buechler JA, Yonemoto W (1990) cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59:971–1005

    CAS  PubMed  Google Scholar 

  20. Skalhegg BS, Tasken K (2000) Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front Biosci 5:D678–D693

    PubMed  Google Scholar 

  21. Montminy M (1997) Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66:807–822

    CAS  PubMed  Google Scholar 

  22. Dhillon AS, Pollock C, Steen H, Shaw PE, Mischak H, Kolch W (2002) Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol Cell Biol 22:3237–3246

    Article  CAS  PubMed  Google Scholar 

  23. Gu W, Cechova K, Tassi V, Dalla-Favera R (1993) Opposite regulation of gene transcription and cell proliferation by c-Myc and Max. Proc Natl Acad Sci USA 90:2935–2939

    CAS  PubMed  Google Scholar 

  24. Wu KJ, Polack A, Dalla-Favera R (1999) Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283:676–679

    Article  CAS  PubMed  Google Scholar 

  25. Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, Dalla-Favera R (1999) Direct activation of TERT transcription by c-MYC. Nat Genet 21:220–224

    Article  CAS  PubMed  Google Scholar 

  26. Andrews NC, Faller DV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19:2499

    CAS  PubMed  Google Scholar 

  27. Loeb DM, Tsao H, Cobb MH, Greene LA (1992) NGF and other growth factors induce an association between ERK1 and the NGF receptor, gp140 prototrk. Neuron 9:1053–1065

    CAS  PubMed  Google Scholar 

  28. Martin AG, Fresno M (2000) Tumor necrosis factor-α activation of NF-κB requires the phosphorylation of Ser-471 in the transactivation domain of c-Rel. J Biol Chem 275:24383–24391

    Article  CAS  PubMed  Google Scholar 

  29. Naumann M, Scheidereit C (1994) Activation of NF-κB in vivo is regulated by multiple phosphorylations. EMBO J 13:4597–4607

    CAS  PubMed  Google Scholar 

  30. Kempkes B, Spitkovsky D, Jansen-Durr P, Ellwart JW, Kremmer E, Delecluse HJ, Rottenberger C, Bornkamm GW, Hammerschmidt W (1995) B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2. EMBO J 14:88–96

    CAS  PubMed  Google Scholar 

  31. Jiang J, Struhl G (1995) Protein kinase A and hedgehog signaling in Drosophila limb development. Cell 80:563–572

    CAS  PubMed  Google Scholar 

  32. Chen C, Agnes F, Gelinas C (1999) Mapping of a serine-rich domain essential for the transcriptional, antiapoptotic and transforming activities of the v-Rel oncoprotein. Mol Cell Biol 19:307–316

    CAS  PubMed  Google Scholar 

  33. Rayet B, Fan Y, Gelinas C (2003) Mutations in the v-Rel transactivation domain indicate altered phosphorylation and identify a subset of NF-κB-regulated cell death inhibitors important for v-Rel transforming activity. Mol Cell Biol 23:1520–1533

    Article  CAS  PubMed  Google Scholar 

  34. Chen C, Edelstein LC, Gelinas C (2000) The Rel/NF-κB family directly activates expression of the apoptosis inhibitor Bcl-xL. Mol Cell Biol 20:2687–2695

    Article  PubMed  Google Scholar 

  35. Sun SC, Maggirwar SB, Harhaj EW, Uhlik M (1999) Binding of c-Rel to STAT5 target sequences in HTLV-I-transformed T cells. Oncogene 18:1401–1409

    Article  CAS  PubMed  Google Scholar 

  36. Petrenko O, Ischenko I, Enrietto PJ (1997) Characterization of changes in gene expression associated with malignant transformation by the NF-κB family member, v-Rel. Oncogene 15:1671–1680

    Article  CAS  PubMed  Google Scholar 

  37. Lee H, Arsura M, Wu M, Duyao M, Buckler AJ, Sonenshein GE (1995) Role of Rel-related factors in control of c-myc gene transcription in receptor-mediated apoptosis of the murine B cell WEHI 231 line. J Exp Med 181:1169–1177

    CAS  PubMed  Google Scholar 

  38. Kanda K, Hu HM, Zhang L, Grandchamps J, Boxer LM (2000) NF-κB activity is required for the deregulation of c-myc expression by the immunoglobulin heavy chain enhancer. J Biol Chem 275:32338–32446

    Article  CAS  PubMed  Google Scholar 

  39. Ji L, Arcinas M, Boxer LM (1994) NF-κB sites function as positive regulators of expression of the translocated c-myc allele in Burkitt’s lymphoma. Mol Cell Biol 14:7967–7974

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. R. Dalla-Favera, in whose laboratory this work was initiated. We are grateful to Drs. D. Baltimore, U. Siebenlist, and R. Goodman for the gifts of HIILuc, pMT2T-c-Rel, and CBP/p300 plasmids. This work was supported by National Science Council NSC 91-2320-B-002-070 and NSC 92-2320-B010-078, and National Health Research Institutes NHRI-EX93-9329SI to K.J.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kou-Juey Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, SH., Chiang, WC., Shih, HM. et al. Stimulation of c-Rel transcriptional activity by PKA catalytic subunit β. J Mol Med 82, 621–628 (2004). https://doi.org/10.1007/s00109-004-0559-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0559-7

Keywords

Navigation