Skip to main content
Log in

Antioxidant enzyme activity and mRNA expression in the islets of Langerhans from the BB/S rat model of type 1 diabetes and an insulin-producing cell line

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

It has been proposed that low activities of antioxidant enzymes in pancreatic beta cells may increase their susceptibility to autoimmune attack. We have therefore used the spontaneously diabetic BB/S rat model of type 1 diabetes to compare islet catalase and superoxide dismutase activities in diabetes-prone and diabetes-resistant animals. In parallel studies, we employed the RINm5F beta cell line as a model system (previously validated) to investigate whether regulation of antioxidant enzyme activity by inflammatory mediators (cytokines, nitric oxide) occurs at the gene or protein expression level. Diabetes-prone rat islets had high insulin content at the age used (58–65 days) but showed increased amounts of DNA damage when subjected to cytokine or hydrogen peroxide treatments. There was clear evidence of oxidative damage in freshly isolated rat islets from diabetes-prone animals and significantly lower catalase and superoxide dismutase activities than in islets from age-matched diabetes-resistant BB/S and control Wistar rats. The mRNA expression of antioxidant enzymes in islets from diabetes-prone and diabetes-resistant BB/S rats and in RINm5F cells, treated with a combination of cytokines or a nitric oxide donor, DETA-NO, was analysed semi-quantitatively by real time PCR. The mRNA expression of catalase was lower, whereas MnSOD expression was higher, in diabetes-prone compared to diabetes-resistant BB/S rat islets, suggesting regulation at the level of gene expression as well as of the activities of these enzymes in diabetes. The protein expression of catalase, CuZnSOD and MnSOD was assessed by Western blotting and found to be unchanged in DETA-NO treated cells. Protein expression of MnSOD was increased by cytokines in RINm5F cells whereas the expression of CuZnSOD was slightly decreased and the level of catalase protein was unchanged. We conclude that there are some changes, mostly upregulation, in protein expression but no decreases in the mRNA expression of catalase, CuZnSOD or MnSOD enzymes in beta cells treated with either cytokines or DETA-NO. The lower antioxidant enzyme activities observed in islets from diabetes-prone BB/S rats could be a factor in the development of disease and in susceptibility to DNA damage in vitro and could reflect islet alterations prior to immune attack or inherent differences in the islets of diabetes-prone animals, but are not likely to result from cytokine or nitric oxide exposure in vivo at that stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a, b
Fig. 4

Similar content being viewed by others

References

  1. Kleemann R, Rothe H, Kolb-Bachofen V, Xie Q-W, Nathan C, Martin S, Kolb H (1993) Transcription and translation of inducible nitric oxide synthase in pancreas of prediabetic BB rats. FEBS Lett 328:9–12

    Article  CAS  PubMed  Google Scholar 

  2. Lindsay RM, Peet RS, Wilkie GS, Rossiter SP, Smith W, Baird JD, Williams BC (1997) In vivo and in vitro evidence of altered nitric oxide metabolism in the spontaneously diabetic, insulin-dependent BB/Edinburgh rat. Br J Pharmacol 120:1–6

    CAS  PubMed  Google Scholar 

  3. Suarez-Pinzon WL, Szabó C, Rabinovitch A (1997) Development of autoimmune diabetes in NOD mice is associated with the formation of peroxynitrite in pancreatic islet β-cells. Diabetes 46:907–911

    PubMed  Google Scholar 

  4. Mandrup-Poulsen T, Helqvist S, Wogensen LD, Molvig J, Pociot F, Johannesen J, Nerup J (1990) Cytokines and free radicals as effector molecules in the destruction of pancreatic β cells. In: Baekkeskov S, Hansen B (eds) Human diabetes—genetic, environmental and autoimmune etiology. Springer, Berlin Heidelberg New York, pp 166–193

  5. Benoist C, Mathis D (1997) Cell death mediators in autoimmune diabetes—no shortage of suspects. Cell 89:1–3

    PubMed  Google Scholar 

  6. Mauricio D, Mandrup-Poulsen T (1998) Apoptosis and the pathogenesis of IDDM. A question of life and death. Diabetes 47:1537–1543

    Google Scholar 

  7. Eizirik DL, Mandrup-Poulsen T (2001) A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133

    CAS  PubMed  Google Scholar 

  8. Grankvist K, Marklund SL, Täljedal I-B (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199:393–398

    PubMed  Google Scholar 

  9. Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466

    PubMed  Google Scholar 

  10. Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742

    PubMed  Google Scholar 

  11. Piganelli JD, Flores SC, Cruz C, Koepp J, Batinic-Haberle I, Crapo J, Day B, Kachadourian R, Young R, Bradley B, Haskins K (2002) A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes 51:347–355

    CAS  PubMed  Google Scholar 

  12. Szabo C, Mabley JG, Moeller SM, Shimanovich R, Pacher P, Virag L, Soriano FG, Van Duzer JH, Williams W, Salzman AL, Groves JT (2002) Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med 8:571–580

    CAS  PubMed  Google Scholar 

  13. Roza AM, Pieper GM, Johnson CP, Adams MB (1995) Pancreatic antioxidant enzyme activity in normoglycemic diabetic prone BB rats. Pancreas 10:53–58

    CAS  PubMed  Google Scholar 

  14. Pisanti FA, Frascatore S, Papaccio G (1988) Superoxide dismutase activity in the BB rat: a dynamic time-course study. Life Sci 43:1625–1632

    Article  CAS  PubMed  Google Scholar 

  15. L’Abbé MR, Trick KD (1994) Changes in pancreatic glutathione peroxidase and superoxide dismutase activities in the prediabetic diabetes-prone BB rat. Proc Soc Exp Biol Med 207:206–212

    PubMed  Google Scholar 

  16. Wohaieb SA, Godin DV (1987) Alterations in tissue antioxidant systems in the spontaneously diabetic (BB Wistar) rat. Can J Physiol Pharmacol 65:2191–2195

    CAS  PubMed  Google Scholar 

  17. Borg LAH, Cagliero E, Sandler S, Welsh N, Eizirik DL (1992) Interleukin-1β increases the activity of superoxide dismutase in rat pancreatic islets. Endocrinology 130:2851–2857

    CAS  PubMed  Google Scholar 

  18. Brown GC (1995) Reversible binding and inhibition of catalase by nitric oxide. Eur J Biochem 232:188–191

    CAS  PubMed  Google Scholar 

  19. Sigfrid LA, Cunningham JM, Beeharry N, Lortz S, Tiedge M, Lenzen S, Carlsson C, Green IC (2003) Cytokines and nitric oxide inhibit enzyme activity of catalase but not its protein or mRNA expression in insulin-producing cells. J Mol Endocrinol 31:509–518

    CAS  PubMed  Google Scholar 

  20. Wu G (1995) Nitric oxide synthesis and the effect of aminoguanidine and N-G-monomethyl-l-arginine on the onset of diabetes in the spontaneously diabetic BB rat. Diabetes 44:360–364

    Google Scholar 

  21. Southern C, Schulster D, Green IC (1990) Inhibition of insulin secretion by interleukin-1β and tumour necrosis factor-α via anl-arginine-dependent nitric oxide generating mechanism. FEBS Lett 276:42–44

    CAS  PubMed  Google Scholar 

  22. Cunningham JM, Mabley JG, Delaney CA, Green IC (1994) The effect of nitric oxide donors on insulin secretion, cyclic GMP and cyclic AMP in rat islets of Langerhans and the insulin-secreting lines HIT-T15 and RINm5F. Mol Cell Endocrinol 102:23–29

    Article  CAS  PubMed  Google Scholar 

  23. Delaney CA, Green MHL, Lowe JE, Green IC (1993) Endogenous nitric oxide induced by interleukin-1β in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the ‘comet’ assay. FEBS Lett 333:291–295

    Article  CAS  PubMed  Google Scholar 

  24. Hadjivassiliou V, Green MHL, James RFL, Swift SM, Clayton HA, Green IC (1998) Insulin secretion, DNA damage and apoptosis in human and rat islets of Langerhans following exposure to nitric oxide, peroxynitrite and cytokines. Nitric Oxide 2:429–441

    Article  CAS  PubMed  Google Scholar 

  25. Green MHL, Lowe JE, Delaney CA, Green IC (1996) Comet assay to detect nitric oxide-dependent DNA damage in mammalian cells. In: Packer L (ed) Methods in Enzymology (Nitric Oxide). Academic, New York pp 243–267

  26. Bone AJ, Hitchcock PR, Gwilliam DJ, Cunningham JM, Barley J (1999) Insulitis and mechanisms of disease resistance: studies in an animal model of insulin dependent diabetes mellitus. J Mol Med 77:57–61

    Article  CAS  PubMed  Google Scholar 

  27. Lally FJ, Ratcliff H, Bone AJ (2001) Apoptosis and disease progression in the spontaneously diabetic BB/S rat. Diabetologia 44:320–324

    CAS  PubMed  Google Scholar 

  28. Lally FJ (2000) Cellular and molecular pathology of disease progression in a model of insulin dependent diabetes. Dissertation, University of Brighton

  29. Hadjivassiliou V, Green MHL, Green IC (2000) Immunomagnetic purification of beta cells from rat islets of Langerhans. Diabetologia 43:1170–1177

    Article  CAS  PubMed  Google Scholar 

  30. Gazdar AF, Chick WL, Oie HK, Sims HL, King DL, Weir GC, Lauris V (1980) Continuous, clonal insulin-and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc Natl Acad Sci USA 77:3519–3523

    CAS  PubMed  Google Scholar 

  31. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    CAS  PubMed  Google Scholar 

  32. Mabley JG, Pacher P, Southan GJ, Salzman AL, Szabo C (2002) Nicotine reduces the incidence of type I diabetes in mice. J Pharmacol Exp Ther 300:876–881

    Article  CAS  PubMed  Google Scholar 

  33. Johansson LH, Borg LAH (1988) A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 174:331–336

    CAS  PubMed  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  35. Puget K, Michelson AM (1974) Iron containing superoxide dismutases from luminous bacteria. Biochimie 56:1255–1267

    CAS  PubMed  Google Scholar 

  36. Bensinger RE, Johnson CM (1981) Luminol assay for superoxide dismutase. Anal Biochem 116:142–145

    CAS  PubMed  Google Scholar 

  37. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  38. Mabley JG, Belin VD, John NE, Green IC (1997) Insulin-like growth factor 1 reverses interleukin-1β inhibition of insulin secretion, induction of nitric oxide synthase and cytokine-mediated apoptosis in rat islets of Langerhans. FEBS Lett 417:235–238

    Article  PubMed  Google Scholar 

  39. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    CAS  PubMed  Google Scholar 

  40. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162:1560159

    Google Scholar 

  41. Rees DG (1995) Essential statistics. Chapman and Hall, London

  42. Cornelius JG, Luttge BG, Peck AB (1993) Antioxidant enzyme activities in IDD-prone and IDD-resistant mice: a comparative study. Free Radic Biol Med 14:409–420

    Article  CAS  PubMed  Google Scholar 

  43. Hahn HJ, Lucke S, Kuttler B, Dunger A, Volk HD, Diamantstein T (1990) Investigations of diabetes-prone normoglycemic BB-rats. In: Shafrir E (ed) Frontiers in diabetes research. Lessons from animal diabetes III. Smith-Gordon, London, pp 30–33

  44. Hahn HJ, Lucke S, Klöting I, Besch W (1991) Prospective investigations of long-term normoglycaemic BB/OK-rats: serial determination of glucose intolerance, insulitis, B-cell volume density and pancreatic insulin content. Exp Clin Endocrinol 98:185–192

    CAS  PubMed  Google Scholar 

  45. Teruya M, Takei S, Forrest LE, Grunewald A, Chan EK, Charles MA (1993) Pancreatic islet function in nondiabetic and diabetic BB rats. Diabetes 42:1310–1317

    CAS  PubMed  Google Scholar 

  46. Curtis SB, Buchan AMJ, Pederson RA, Brown JC (1992) Insulin response of cultured islets from diabetic and nondiabetic BB rats. Metabolism 41:1047–1052

    CAS  PubMed  Google Scholar 

  47. Pederson RA, Curtis SB, Chisholm CB, Gaba NRA, Campos RV, Brown JC (1991) Insulin-secretion and islet endocrine cell content at onset and during the early stages of diabetes in the BB rat—effect of the level of glycemic control. Can J Physiol Pharmacol 69:1230–1236

    CAS  PubMed  Google Scholar 

  48. Ruggere MD, Patel YC (1984) Somatostatin, glucagon and insulin secretion from perfused pancreas of BB rats. Am J Physiol 247:E221–E227

    CAS  PubMed  Google Scholar 

  49. Sigfrid LAJ (2002) Regulation of antioxidant enzymes by cytokines or nitric oxide in insulin-containing cells. Dissertation, University of Brighton

  50. Lucke S, Liepe L, Todoran L, Besch W, Diamantstein T, Hahn H-J (1990) Phenotyping of cells infiltrating the pancreas of diabetic BB rats depending on duration of diabetes. In: Shafrir E (ed) Frontiers in diabetes research. Lessons from animal diabetes III. Smith-Gordon, London, pp 34–37

  51. Wachlin G, Augstein P, Schroder D, Kuttler B, Kloting I, Heinke P, Schmidt S (2003) IL-1 beta, IFN-gamma and TNF-alpha increase vulnerability of pancreatic beta cells to autoimmune destruction. J Autoimmun 20:303–312

    Article  CAS  PubMed  Google Scholar 

  52. Walker R, Bone AJ, Cooke A, Baird JD (1988) Distinct macrophage subpopulations in pancreas of prediabetic BB/E rats. Diabetes 37:1301–1304

    CAS  PubMed  Google Scholar 

  53. Jahr H, Bretzel RG, Wacker S, Weinand S, Brandhorst H, Brandhorst D, Lau D, Hering BJ, Federlin K (1995) Toxic effects of superoxide, hydrogen peroxide and nitric oxide on human and pig islets. Transplant Proc 27:3220–3221

    CAS  PubMed  Google Scholar 

  54. Hussain MJ, Peakman M, Gallati S, Lo SSS, Hawa M, Viberti GC, Watkins PJ, Leslie RDG, Vergani D (1996) Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM. Diabetologia 39:60–69

    CAS  PubMed  Google Scholar 

  55. Rabinovitch A, Suarez-Pinzon WL (1998) Cytokines and their roles in pancreatic islet β-cell destruction and insulin-dependent diabetes mellitus. Biochem Pharmacol 55:1139–1149

    Article  CAS  PubMed  Google Scholar 

  56. Sjöholm A (1998) Aspects of the involvement of interleukin-1 and nitric oxide in the pathogenesis of insulin-dependent diabetes mellitus. Cell Death Differ 5:461–468

    Article  CAS  PubMed  Google Scholar 

  57. Kolb H, WorzPagenstert U, Kleemann R, Rothe H, Rowsell P, Scott FW (1996) Cytokine gene expression in the BE rat pancreas: Natural course and impact of bacterial vaccines. Diabetologia 39:1448–1454

    Article  CAS  PubMed  Google Scholar 

  58. Christensen UB, Larsen PM, Fey SJ, Andersen HU, Nawrocki A, Sparre T, Mandrup-Poulsen T, Nerup J (2000) Islet protein expression changes during diabetes development in islet syngrafts in BB-DP rats and during rejection of BB-DP islet allografts. Autoimmunity 32:1–15

    CAS  PubMed  Google Scholar 

  59. Zipris D, Greiner DL, Malkani S, Whalen B, Mordes JP, Rossini AA (1996) Cytokine gene expression in islets and thyroids of BB rats: IFN-gamma and IL-12p40 mRNA increase with age in both diabetic and insulin-treated nondiabetic BB rats. J Immunol 156:1315–1321

    CAS  PubMed  Google Scholar 

  60. Rabinovitch A, Suarez-Pinzon W, El-Sheikh A, Sorensen O, Power RF (1996) Cytokine gene expression in pancreatic islet-infiltrating leukocytes of BB rats. Expression of Th1 cytokines correlates with β-cell destructive insulitis and IDDM. Diabetes 45:749–754

    CAS  PubMed  Google Scholar 

  61. Sparre T, Christensen UB, Larsen PM, Fey SJ, Wrzesinski K, Roepstorff P, Mandrup-Poulsen T, Pociot F, Karlsen AE, Nerup J (2002) IL-1 beta induced protein changes in diabetes prone BB rat islets of Langerhans identified by proteome analysis. Diabetologia 45:1550–1561

    Google Scholar 

  62. Sparre T, Sprinkel AME, Christensen UB, Karlsen AE, Pociot F, Nerup J (2003) Prophylactic insulin treatment of syngeneically transplanted pre-diabetic BB-DP rats. Autoimmunity 36:99–109

    Article  CAS  PubMed  Google Scholar 

  63. Bertera S, Crawford ML, Alexander AM, Papworth GD, Watkins SC, Robbins PD, Trucco M (2003) Gene transfer of manganese superoxide dismutase extends islet graft function in a mouse model of autoimmune diabetes. Diabetes 52:387–393

    CAS  PubMed  Google Scholar 

  64. Sandstrom J, Jonsson LM, Edlund H, Holmberg D, Marklund SL (2002) Overexpression of extracellular-SOD in islets of nonobese diabetic mice and development of diabetes. Free Radic Biol Med 33:71–75

    Article  CAS  PubMed  Google Scholar 

  65. Green IC, Cunningham JM, Delaney CA, Elphick MR, Mabley JG, Green MHL (1994) Effects of cytokines and nitric oxide donors on insulin secretion, cyclic GMP and DNA damage: relation to nitric oxide production. Biochem Soc Trans 22:30–37

    CAS  PubMed  Google Scholar 

  66. Eizirik DL, Leijerstam F (1994) The inducible form of nitric oxide synthase (iNOS) in insulin-producing cells. Diabete Metab 20:116–122

    CAS  PubMed  Google Scholar 

  67. Marliss EB, Nakhooda AF, Poussier P (1983) Clinical forms and natural history of the diabetic syndrome, insulin and glucagon secretion in the BB rat. Metabolism 32:11–17

    CAS  PubMed  Google Scholar 

  68. Kelm M (1999) Nitric oxide metabolism and breakdown. Biochim Biopys Acta 1411:273–289

    Article  CAS  Google Scholar 

  69. Eizirik DL, Delaney CA, Green MHL, Cunningham JM, Thorpe JR, Pipeleers DG, Hellerström C, Green IC (1996) Nitric oxide donors decrease the function and survival of human pancreatic islets. Mol Cell Endocrinol 118:71–83

    Article  CAS  PubMed  Google Scholar 

  70. Cunningham JM, Green IC (1994) Cytokines, nitric oxide and insulin secreting cells. Growth Regul 4:173–180

    CAS  PubMed  Google Scholar 

  71. Eizirik DL, Pavlovic D (1997) Is there a role for nitric oxide in beta-cell dysfunction and damage in IDDM? Diabetes Metab Rev 13:293–307

    Google Scholar 

  72. Brunelli L, Koppenol WH, Bertolini A, Beckman JS (1994) Catalase can scavenge nitric oxide. Circulation 90:458–458

    Google Scholar 

  73. Farias-Eisner R, Chaudhuri G, Aeberhard E, Fukuto JM (1996) The chemistry and tumoricidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility. J Biol Chem 271:6144–6151

    Article  CAS  PubMed  Google Scholar 

  74. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    Article  CAS  PubMed  Google Scholar 

  75. Kono Y, Okada S, Tazawa Y, Kanzaki S, Mura T, Ueta E, Nanba E, Otsuka Y (2002) Response of anti-oxidant enzymes mRNA in the neonatal rat liver exposed to 1,2,3,4-tetrachlorodibenzo-p-dioxin via lactation. Pediatr Int 44:481–487

    Article  CAS  PubMed  Google Scholar 

  76. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

  77. Rabinovitch A, Suarez WL, Thomas PD, Strynadka K, Simpson I (1992) Cytotoxic effects of cytokines on rat islets: evidence for involvement of free radicals and lipid peroxidation. Diabetologia 35:409–413

    PubMed  Google Scholar 

  78. Cardozo AK, Kruhøffer M, Leeman R, Ørntoft T, Eizirik DL (2001) Identification of novel cytokine-induced genes in pancreatic β-cells by high-density oligonucleotide arrays. Diabetes 50:909–920

    CAS  PubMed  Google Scholar 

  79. Rieneck K, Bovin LF, Josefsen K, Buschard K, Svenson M, Bendtzen K (2000) Massive parallel gene expression profiling of RINm5F pancreatic islet beta-cells stimulated with interleukin-1 beta. APMIS 108:855–872

    CAS  PubMed  Google Scholar 

  80. Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, Kruhoffer M, Orntoft T, Eizirik D (2001) A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic beta-cells. J Biol Chem 276:48879–48886

    Article  CAS  PubMed  Google Scholar 

  81. Ling Z, Van de Casteele M, Eizirik DL, Pipeleers DL (2000) Interleukin-1β-induced alteration in a β-cell phenotype can reduce cellular sensitivity to conditions that cause necrosis but not to cytokine-induced apoptosis. Diabetes 49:340–345

    Google Scholar 

Download references

Acknowledgements

Supported in part by the Concerted Action IREN in the BIOMED 2 programme of the European Union. We thank Mrs Jasmine Barley for her skilful management of the BB/S rat colony, Professor M.H.L.Green for advice on the comet assay and Dr Stephan Lortz and colleagues, Hannover Medical School, for advice on antibodies. The work formed part of the PhD of Louise Sigfrid, funded by the University of Brighton. A.L.R.H. was in receipt of a PhD studentship from the Consejo Nacional en Ciencia y Tecnologia of Mexico. The financial support of the Wellcome Trust (A.J.B., J.M.C.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene C. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigfrid, L.A., Cunningham, J.M., Beeharry, N. et al. Antioxidant enzyme activity and mRNA expression in the islets of Langerhans from the BB/S rat model of type 1 diabetes and an insulin-producing cell line. J Mol Med 82, 325–335 (2004). https://doi.org/10.1007/s00109-004-0533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0533-4

Keywords

Navigation