Skip to main content
Log in

Hormonale und metabolische Funktionen des Dünndarms

Hormonal and metabolic functions of the small intestine

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Der Dünndarm besitzt zahlreiche hormonale und metabolische Funktionen, für die neben den Enterozyten enteroendokrine Zellen in der Mukosa verantwortlich sind. So führt eine Freisetzung von Cholezystokinin zu einer Sekretion von Pankreasenzymen und einer Gallenblasenkontraktion. Kürzlich wurde eine hormonelle Regulierung der Gallenblasenfüllung durch das Hormon FGF-15/19 beschrieben, das vermittelt durch Gallensalze aus Enterozyten des terminalen Ileums sezerniert wird und daneben eine Verminderung der Gallensäure- und Fettsäuresynthese sowie eine Hemmung der Glukoneogenese bewirkt. Mit Ghrelin ist ein intestinales Hormon bekannt, das die Nahrungsaufnahme steigert. Dem stehen eine Reihe von Sättigungshormonen wie z.  B. Cholezystokinin und Glucagon-like Peptide gegenüber, durch deren Wirkung die Nahrungsaufnahme gehemmt wird. Die Kenntnis dieser Hormone und ihrer Funktionen ist für das Verständnis der Stoffwechselkontrolle und der Pathophysiologie zahlreicher Erkrankungen wesentlich. Hieraus ergeben sich pharmakologische Ansätze z. B. zur Behandlung von Motilitätsstörungen, des Diabetes mellitus Typ 2, der nicht-alkoholischen Fettlebererkrankung und der Adipositas.

Abstract

The small intestine exhibits numerous hormonal and metabolic functions. These are mediated by enteroendocrine cells that are expressed in addition to enterocytes in the mucosa of the small intestine. The release of cholecystokinin causes the secretion of pancreatic enzymes and a contraction of the gallbladder. Recently, a hormonal regulation of gallbladder filling was confirmed. This is mediated by the hormone FGF15/19 which is secreted by enterocytes of the terminal ileum following induction of its expression by bile acids. In addition, FGF15/19 reduces synthesis of bile acids and fatty acids and inhibits gluconeogenesis. Ghrelin is the only intestinal hormone that increases food intake. Contrary, a number of hormones such as cholecystokinin and glucagon-like peptide are expressed in the small intestine and mediate satiation. Knowledge of the intestinal hormones and their functions is important for the full understanding of metabolic control and provides targets for innovative therapy of several diseases such as diabetes type 2, non-alcoholic steatohepatitis and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

cAMP:

Zyklisches Adenosinmonophosphat

CCK:

Cholezystokinin

CYP7A1:

Cholesterin-7α-Hydroxylase

DPP-IV:

Dipeptidylpeptidase IV

FXR:

Farnesol-X-Rezeptor

FGF:

Fibroblast Growth Factor

FGFR:

Fibroblast Growth Factor Receptor

FOXO-1:

Forkhead Transcription Factor 1

GLP:

Glucagon-like Peptide

IgA:

Immunglobulin A

mRNA:

Messenger-Ribonukleinsäure

NPY:

Neuropeptide Y

PYY:

Peptide Tyrosine Tyrosine

SHP-1:

Small Heterodimer Partner 1

VIP:

Vasoaktives intestinales Peptid

ZNS:

Zentrales Nervensystem

Literatur

  1. Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132: 2131–2157

    Article  CAS  PubMed  Google Scholar 

  2. Bhatnagar S, Damron HA, Hillgartner FB (2009) Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J Biol Chem 284: 10023–10033

    Article  CAS  PubMed  Google Scholar 

  3. Choi M, Moschetta A, Bookout al. et al. (2006) Identification of a hormonal basis for gallbladder filling. Nat Med 12: 1253–1255

    Article  CAS  PubMed  Google Scholar 

  4. Crawley JN, Beinfeld MC (1983) Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature 302: 703–706

    Article  CAS  PubMed  Google Scholar 

  5. Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117: 13–23

    Article  CAS  PubMed  Google Scholar 

  6. Cummings DE, Weigle DS, Frayo RS et al. (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346: 1623–1630

    Article  PubMed  Google Scholar 

  7. Dueland S, Reichen J, Everson GT et al. (1991) Regulation of cholesterol and bile acid homoeostasis in bile-obstructed rats. Biochem J 280: 373–377

    CAS  PubMed  Google Scholar 

  8. Fu L, John LM, Adams SH et al. (2004) Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145: 2594–2603

    Article  CAS  PubMed  Google Scholar 

  9. Giralt M, Vergara P (1999) Glucagonlike peptide-1 (GLP-1) participation in ileal brake induced by intraluminal peptones in rat. Dig Dis Sci 44: 322–329

    Article  CAS  PubMed  Google Scholar 

  10. Grider JR (1994) Role of cholecystokinin in the regulation of gastrointestinal motility. J Nutr 124: 1334S–1339S

    CAS  PubMed  Google Scholar 

  11. Inagaki T, Choi M, Moschetta A et al. (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2: 217–225

    Article  CAS  PubMed  Google Scholar 

  12. Kissileff HR, Carretta JC, Geliebter A et al. (2003) Cholecystokinin and stomach distension combine to reduce food intake in humans. Am J Physiol Regul Integr Comp Physiol 285: R992–998

    CAS  PubMed  Google Scholar 

  13. Masclee AA, Vu MK (2003) Gallbladder motility in inflammatory bowel diseases. Dig Liver Dis 35 (Suppl 3): S35–38

    Article  PubMed  Google Scholar 

  14. Moran TH, Kinzig KP (2004) Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol 286: G183–188

    Article  CAS  PubMed  Google Scholar 

  15. Moschetta A, Stolk MF, Rehfeld JF et al. (2001) Severe impairment of postprandial cholecystokinin release and gall-bladder emptying and high risk of gallstone formation in acromegalic patients during Sandostatin LAR. Aliment Pharmacol Ther 15: 181–185

    Article  CAS  PubMed  Google Scholar 

  16. Murphy KG, Dhillo WS, Bloom SR (2006) Gut peptides in the regulation of food intake and energy homeostasis. Endocr Rev 27: 719–727

    Article  CAS  PubMed  Google Scholar 

  17. Pandak WM, Heuman DM, Hylemon PB et al. (1995) Failure of intravenous infusion of taurocholate to down-regulate cholesterol 7 alpha-hydroxylase in rats with biliary fistulas. Gastroenterology 108: 533–544

    Article  CAS  PubMed  Google Scholar 

  18. Pironi L, Stanghellini V, Miglioli M et al. (1993) Fat-induced ileal brake in humans: a dose-dependent phenomenon correlated to the plasma levels of peptide YY. Gastroenterology 105: 733–739

    CAS  PubMed  Google Scholar 

  19. Qualmann C, Nauck MA, Holst JJ et al. (1995) Glucagon-like peptide 1 (7–36 amide) secretion in response to luminal sucrose from the upper and lower gut. A study using alpha-glucosidase inhibition (acarbose). Scand J Gastroenterol 30: 892–896

    Article  CAS  PubMed  Google Scholar 

  20. Schaap FG, Gaag NA van der, Gouma DJ et al. (2009) High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology 49: 1228–1235

    Article  CAS  PubMed  Google Scholar 

  21. Schreuder TC, Marsman HA, Lenicek M et al. (2010 The hepatic response to FGF19 is impaired in patients with non-alcoholic fatty liver disease and insulin resistance. Am J Physiol Gastrointest Liver Physiol 298: G440–445

    Article  CAS  PubMed  Google Scholar 

  22. Shaffer EA (2000) Review article: control of gall-bladder motor function. Aliment Pharmacol Ther 14 (Suppl 2): 2–8

    Article  CAS  PubMed  Google Scholar 

  23. Shaffer EA (2006) Gallstone disease: Epidemiology of gallbladder stone disease. Best Pract Res Clin Gastroenterol 20: 981–996

    Article  PubMed  Google Scholar 

  24. Shin DJ, Osborne TF (2009) FGF15/FGFR4 integrates growth factor signaling with hepatic bile acid metabolism and insulin action. J Biol Chem 284: 11110–11120

    Article  CAS  PubMed  Google Scholar 

  25. Strader AD, Woods SC (2005) Gastrointestinal hormones and food intake. Gastroenterology 128: 175–191

    Article  CAS  PubMed  Google Scholar 

  26. Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407: 908–913

    Article  CAS  PubMed  Google Scholar 

  27. Vincent RP, le Roux CW (2008) The satiety hormone peptide YY as a regulator of appetite. J Clin Pathol 61: 548–552

    Article  CAS  PubMed  Google Scholar 

  28. Wang PY, Caspi L, Lam CK et al. (2008) Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 452: 1012–1016

    Article  CAS  PubMed  Google Scholar 

  29. Wren AM, Seal LJ, Cohen MA et al. (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86: 5992

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wittenburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittenburg, H., Tennert, U. & Mössner, J. Hormonale und metabolische Funktionen des Dünndarms. Internist 51, 695–701 (2010). https://doi.org/10.1007/s00108-009-2564-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-009-2564-y

Schlüsselwörter

Keywords

Navigation