Skip to main content
Log in

Aspekte der perioperativen Behandlung von Diabetespatienten

Aspects of perioperative care in patients with diabetes

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Diabetes mellitus ist in Deutschland eine Volkskrankheit. Aufgrund der diabetischen Folgeerkrankungen (Makroangiopathie, Mikroangiopathie und Neuropathie) bedürfen Diabetespatienten einer intensiveren anästhesiologischen Betreuung in der perioperativen Phase im Vergleich zu Nichtdiabetespatienten. Eine sorgfältige, ausführliche Anamnese mit Erfassung des diabetesbedingten perioperativen Gefährdungspotenzials (Herz-Kreislauf-Erkrankungen, Gastroparese, Neuropathie, „Stiff-joint“-Syndrom) hat nach derzeitigem Wissensstand wahrscheinlich größere Bedeutung als eine spezifische Medikamenten- oder Verfahrenswahl. Das intraoperative anästhesiologische Management diabeteskranker Patienten fokussiert sich in besonderem Maß auf die Erhaltung der hämodynamischen Stabilität, perioperative Infektionsprophylaxe und Kontrolle der Glucosehomöostase. Wurde noch vor einigen Jahren das Erzwingen einer strikten Normoglykämie mithilfe forcierter Insulintherapie propagiert, erkennen neuere Studien hierin ein Risikopotenzial. Die optimierte perioperative Behandlung von Diabetespatienten sollte daher den gewünschten Blutzuckerspiegel klar benennen, bewährte Therapiealgorithmen vorhalten und eine engmaschige Überwachung mit ggf. umgehender Modifikation der Behandlung ermöglichen.

Abstract

Diabetes is a common disease in Germany. Due to diabetes-associated end-organ disease, such as large and small vessel disease and neuropathy, diabetic patients require more intense anesthesia care during the perioperative phase. An in-depth and comprehensive medical history focusing on hemodynamic alterations, gastroparesis, neuropathy and stiff joint syndrome is a cornerstone of perioperative care and may affect outcome of diabetes patients more than specific anesthetic medications or the anesthetic procedure. Intraoperative anesthetic care needs to focus on preservation of hemodynamic stability, perioperative infection control and maintenance of glucose homeostasis. Whereas some years ago strict glucose control by aggressive insulin therapy was adamantly advocated, the results of recent studies have put the risk of such therapeutic algorithms into perspective. Therefore, optimized perioperative care of diabetic patients consists of setting a predefined targeted blood glucose level, evidence-based therapeutic approaches to reach that goal and finally adequate and continuous monitoring and amendment of the therapeutic approach if required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Adler AI, Stevens RJ, Manley SE et al (2003) Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 63:225–232

    Article  PubMed  Google Scholar 

  2. Alper I, Ulukaya S, Makay O et al (2010) The pharmacodynamic effects of rocuronium during general anesthesia in patients with type 2 diabetes mellitus. Minerva Anestesiol 76:115–119

    PubMed  CAS  Google Scholar 

  3. Amour J, Kersten JR (2008) Diabetic cardiomyopathy and anesthesia: bench to bedside. Anesthesiology 108:524–530

    Article  PubMed  Google Scholar 

  4. Anonymous (2007) KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis 49:12–154

    Article  Google Scholar 

  5. Bagdade JD, Root RK, Bulger RJ (1974) Impaired leukocyte function in patients with poorly controlled diabetes. Diabetes 23:9–15

    PubMed  CAS  Google Scholar 

  6. Belhoula M, Ciebiera JP, De La Chapelle A et al (2003) Clonidine premedication improves metabolic control in type 2 diabetic patients during ophthalmic surgery. Br J Anaesth 90:434–439

    Article  PubMed  CAS  Google Scholar 

  7. Bottini P, Boschetti E, Pampanelli S et al (1997) Contribution of autonomic neuropathy to reduced plasma adrenaline responses to hypoglycemia in IDDM: evidence for a nonselective defect. Diabetes 46:814–823

    Article  PubMed  CAS  Google Scholar 

  8. Boyer JK, Thanigaraj S, Schechtman KB et al (2004) Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol 93:870–875

    Article  PubMed  Google Scholar 

  9. Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139

    Article  PubMed  CAS  Google Scholar 

  10. Calverley PM, Ewing DJ, Campbell IW et al (1982) Preservation of the hypoxic drive to breathing in diabetic autonomic neuropathy. Clin Sci (Lond) 63:17–22

    Google Scholar 

  11. Chang K, Uitto J, Rowold EA et al (1980) Increased collagen cross-linkages in experimental diabetes: reversal by beta-aminopropionitrile and D-penicillamine. Diabetes 29:778–781

    Article  PubMed  CAS  Google Scholar 

  12. Channer KS, Jackson PC, O’Brien I et al (1985) Oesophageal function in diabetes mellitus and its association with autonomic neuropathy. Diabet Med 2:378–382

    Article  PubMed  CAS  Google Scholar 

  13. Charlson ME, Mackenzie CR, Gold JP et al (1990) Preoperative characteristics predicting intraoperative hypotension and hypertension among hypertensives and diabetics undergoing noncardiac surgery. Ann Surg 212:66–81

    Article  PubMed  CAS  Google Scholar 

  14. Chen D, Lee SL, Peterfreund RA (2009) New therapeutic agents for diabetes mellitus: implications for anesthetic management. Anesth Analg 108:1803–1810

    Article  PubMed  CAS  Google Scholar 

  15. David JS, Tavernier B, Amour J et al (2004) Myocardial effects of halothane and sevoflurane in diabetic rats. Anesthesiology 100:1179–1187

    Article  PubMed  CAS  Google Scholar 

  16. Desborough JP, Hall GM, Hart GR et al (1991) Midazolam modifies pancreatic and anterior pituitary hormone secretion during upper abdominal surgery. Br J Anaesth 67:390–396

    Article  PubMed  CAS  Google Scholar 

  17. Desborough JP, Jones PM, Persaud SJ et al (1993) Isoflurane inhibits insulin secretion from isolated rat pancreatic islets of Langerhans. Br J Anaesth 71:873–876

    Article  PubMed  CAS  Google Scholar 

  18. DeutscheGesellschaft für Anästhesiologie und Intensivmedizin, Deutsche Gesellschaft für Innere Medizin, Deutsche Gesellschaft für Chirurgie (2010) Präoperative Evaluation erwachsener Patienten vor elektiven, nichtkardiochirurgischen Eingriffen. Anaesthesist 59:1041–1050

    Article  Google Scholar 

  19. Diltoer M, Camu F (1988) Glucose homeostasis and insulin secretion during isoflurane anesthesia in humans. Anesthesiology 68:880–886

    Article  PubMed  CAS  Google Scholar 

  20. Doenst T, Wijeysundera D, Karkouti K et al (2005) Hyperglycemia during cardiopulmonary bypass is an independent risk factor for mortality in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 130:1144

    Article  PubMed  Google Scholar 

  21. Donatelli F, Vavassori A, Bonfanti S et al (2007) Epidural anesthesia and analgesia decrease the postoperative incidence of insulin resistance in preoperative insulin-resistant subjects only. Anesth Analg 104:1587–1593

    Article  PubMed  CAS  Google Scholar 

  22. Duncan AI, Koch CG, Xu M et al (2007) Recent metformin ingestion does not increase in-hospital morbidity or mortality after cardiac surgery. Anesth Analg 104:42–50

    Article  PubMed  CAS  Google Scholar 

  23. Ebel D, Mullenheim J, Frassdorf J et al (2003) Effect of acute hyperglycaemia and diabetes mellitus with and without short-term insulin treatment on myocardial ischaemic late preconditioning in the rabbit heart in vivo. Pflugers Arch 446:175–182

    PubMed  CAS  Google Scholar 

  24. Erden V, Basaranoglu G, Delatioglu H et al (2003) Relationship of difficult laryngoscopy to long-term non-insulin-dependent diabetes and hand abnormality detected using the ‚prayer sign’. Br J Anaesth 91:159–160

    Article  PubMed  CAS  Google Scholar 

  25. Fach EM, Garulacan LA, Gao J et al (2004) In vitro biomarker discovery for atherosclerosis by proteomics. Mol Cell Proteomics 3:1200–1210

    Article  PubMed  CAS  Google Scholar 

  26. Finfer S, Chittock DR, Su SY et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297

    Article  PubMed  Google Scholar 

  27. Fleisher LA, Beckman JA, Brown KA et al (2007) ACC/AHA 2007 Guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery) developed in collaboration with the American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, and Society for Vascular Surgery. J Am Coll Cardiol 50:1707–1732

    Article  PubMed  Google Scholar 

  28. Fragen RJ, Shanks CA, Molteni A et al (1984) Effects of etomidate on hormonal responses to surgical stress. Anesthesiology 61:652–656

    Article  PubMed  CAS  Google Scholar 

  29. Frei CR, Daniels KR (2012) Potential complications of Medicare reimbursement policy regarding health-care-associated infections. Am J Health Syst Pharm 69:190, 192

    Article  PubMed  Google Scholar 

  30. Furnary AP, Zerr KJ, Grunkemeier GL, Starr A (1999) Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann Thorac Surg 67:352–360, discussion 360–362

    Article  PubMed  CAS  Google Scholar 

  31. Gandhi GY, Nuttall GA, Abel MD et al (2007) Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial. Ann Intern Med 146:233–243

    PubMed  Google Scholar 

  32. Gingerich R, Wright PH, Paradise RR (1974) Inhibition by halothane of glucose-stimulated insulin secretion in isolated pieces of rat pancreas. Anesthesiology 40:449–452

    Article  PubMed  CAS  Google Scholar 

  33. Grgic A, Rosenbloom AL, Weber FT et al (1976) Joint contracture—common manifestation of childhood diabetes mellitus. J Pediatr 88:584–588

    Article  PubMed  CAS  Google Scholar 

  34. Gu W, Kehl F, Krolikowski JG et al (2008) Simvastatin restores ischemic preconditioning in the presence of hyperglycemia through a nitric oxide-mediated mechanism. Anesthesiology 108:634–642

    Article  PubMed  CAS  Google Scholar 

  35. Gu W, Pagel PS, Warltier DC et al (2003) Modifying cardiovascular risk in diabetes mellitus. Anesthesiology 98:774–779

    Article  PubMed  Google Scholar 

  36. Hall GM (1985) The anaesthetic modification of the endocrine and metabolic response to surgery. Ann R Coll Surg Engl 67:25–29

    PubMed  CAS  Google Scholar 

  37. Hattori Y, Azuma M, Kemmotsu O et al (1992) Differential sensitivity of diabetic rat papillary muscles to negative inotropic effects of oxybarbiturates versus thiobarbiturates. Anesth Analg 74:97–104

    Article  PubMed  CAS  Google Scholar 

  38. Kadoi Y (2010) Anesthetic considerations in diabetic patients. Part II: intraoperative and postoperative management of patients with diabetes mellitus. J Anesth 24:748–756

    Article  PubMed  Google Scholar 

  39. Kahn L (1997) Neuropathies masquerading as an epidural complication. Can J Anaesth 44:313–316

    Article  PubMed  CAS  Google Scholar 

  40. Kalichman MW, Calcutt NA (1992) Local anesthetic-induced conduction block and nerve fiber injury in streptozotocin-diabetic rats. Anesthesiology 77:941–947

    Article  PubMed  CAS  Google Scholar 

  41. Kehl F, Krolikowski JG, Mraovic B et al (2002) Hyperglycemia prevents isoflurane-induced preconditioning against myocardial infarction. Anesthesiology 96:183–188

    Article  PubMed  CAS  Google Scholar 

  42. Kersten JR, Gross GJ, Pagel PS et al (1998) Activation of adenosine triphosphate-regulated potassium channels: mediation of cellular and organ protection. Anesthesiology 88:495–513

    Article  PubMed  CAS  Google Scholar 

  43. Kersten JR, Toller WG, Gross ER et al (2000) Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol 278:H1218–1224

    PubMed  CAS  Google Scholar 

  44. Keyl C, Lemberger P, Palitzsch KD et al (1999) Cardiovascular autonomic dysfunction and hemodynamic response to anesthetic induction in patients with coronary artery disease and diabetes mellitus. Anesth Analg 88:985–991

    PubMed  CAS  Google Scholar 

  45. Kindler CH, Seeberger MD, Staender SE (1998) Epidural abscess complicating epidural anesthesia and analgesia. An analysis of the literature. Acta Anaesthesiol Scand 42:614–620

    Article  PubMed  CAS  Google Scholar 

  46. Kita T, Mammoto T, Taniguchi H et al (2003) Diabetes attenuates the hemodynamic stabilizing effects of oral clonidine during off-pump coronary artery bypass surgery. J Clin Anesth 15:520–524

    Article  PubMed  CAS  Google Scholar 

  47. Kong MF, Horowitz M, Jones KL et al (1999) Natural history of diabetic gastroparesis. Diabetes Care 22:503–507

    Article  PubMed  CAS  Google Scholar 

  48. Koster I, Von Ferber L, Ihle P et al (2006) The cost burden of diabetes mellitus: the evidence from Germany—the CoDiM study. Diabetologia 49:1498–1504

    Article  PubMed  CAS  Google Scholar 

  49. Kurz A, Sessler DI, Lenhardt R (1996) Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med 334:1209–1215

    Article  PubMed  CAS  Google Scholar 

  50. Latson TW, Ashmore TH, Reinhart DJ et al (1994) Autonomic reflex dysfunction in patients presenting for elective surgery is associated with hypotension after anesthesia induction. Anesthesiology 80:326–337

    Article  PubMed  CAS  Google Scholar 

  51. Lazar HL, Chipkin SR, Fitzgerald CA et al (2004) Tight glycemic control in diabetic coronary artery bypass graft patients improves perioperative outcomes and decreases recurrent ischemic events. Circulation 109:1497–1502

    Article  PubMed  CAS  Google Scholar 

  52. Liebl A, Spannheimer A, Reitberger U et al (2002) Costs of long-term complications in type 2 diabetes patients in Germany. Results of the CODE-2 Study. Med Klin (Munich) 97:713–719

    Google Scholar 

  53. Margolis JR, Kannel WS, Feinleib M et al (1973) Clinical features of unrecognized myocardial infarction—silent and symptomatic. Eighteen year follow-up: the Framingham study. Am J Cardiol 32:1–7

    Article  PubMed  CAS  Google Scholar 

  54. Martin S, Schramm W, Schneider B et al (2007) Epidemiology of complications and total treatment costs from diagnosis of Type 2 diabetes in Germany (ROSSO 4). Exp Clin Endocrinol Diabetes 115:495–501

    Article  PubMed  CAS  Google Scholar 

  55. Mashour GA, Kheterpal S, Vanaharam V et al (2008) The extended Mallampati score and a diagnosis of diabetes mellitus are predictors of difficult laryngoscopy in the morbidly obese. Anesth Analg 107:1919–1923

    Article  PubMed  Google Scholar 

  56. Meisinger C, Strassburger K, Heier M et al (2010) Prevalence of undiagnosed diabetes and impaired glucose regulation in 35–59-year-old individuals in Southern Germany: the KORA F4 Study. Diabet Med 27:360–362

    Article  PubMed  CAS  Google Scholar 

  57. Mowat A, Baum J (1971) Chemotaxis of polymorphonuclear leukocytes from patients with diabetes mellitus. N Engl J Med 284:621–627

    Article  PubMed  CAS  Google Scholar 

  58. Nadal JL, Fernandez BG, Escobar IC et al (1998) The palm print as a sensitive predictor of difficult laryngoscopy in diabetics. Acta Anaesthesiol Scand 42:199–203

    Article  PubMed  CAS  Google Scholar 

  59. Nishimura M, Miyamoto K, Suzuki A et al (1989) Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax 44:251–257

    Article  PubMed  CAS  Google Scholar 

  60. Ono T, Kobayashi J, Sasako Y et al (2002) The impact of diabetic retinopathy on long-term outcome following coronary artery bypass graft surgery. J Am Coll Cardiol 40:428–436

    Article  PubMed  Google Scholar 

  61. Ouattara A, Lecomte P, Le Manach Y et al (2005) Poor intraoperative blood glucose control is associated with a worsened hospital outcome after cardiac surgery in diabetic patients. Anesthesiology 103:687–694

    Article  PubMed  CAS  Google Scholar 

  62. Page MM, Watkins PJ (1978) Cardiorespiratory arrest and diabetic autonomic neuropathy. Lancet 1:14–16

    Article  PubMed  CAS  Google Scholar 

  63. Patton N, Aslam T, Macgillivray T et al (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 206:319–348

    Article  PubMed  Google Scholar 

  64. Peleg AY, Weerarathna T, McCarthy JS et al (2007) Common infections in diabetes: pathogenesis, management and relationship to glycaemic control. Diabetes Metab Res Rev 23:3–13

    Article  PubMed  CAS  Google Scholar 

  65. Preiser JC, Devos P, Ruiz-Santana S et al (2009) A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med 35:1738–1748

    Article  PubMed  CAS  Google Scholar 

  66. Rassias AJ, Marrin CA, Arruda J et al (1999) Insulin infusion improves neutrophil function in diabetic cardiac surgery patients. Anesth Analg 88:1011–1016

    PubMed  CAS  Google Scholar 

  67. Rathmann W, Haastert B, Icks A et al (2003) High prevalence of undiagnosed diabetes mellitus in Southern Germany: target populations for efficient screening. The KORA survey 2000. Diabetologia 46:182–189

    PubMed  CAS  Google Scholar 

  68. Raucoules-Aime M, Labib Y, Levraut J et al (1996) Use of i.v. insulin in well-controlled non-insulin-dependent diabetics undergoing major surgery. Br J Anaesth 76:198–202

    Article  PubMed  CAS  Google Scholar 

  69. Reissell E, Orko R, Maunuksela EL et al (1990) Predictability of difficult laryngoscopy in patients with long-term diabetes mellitus. Anaesthesia 45:1024–1027

    Article  PubMed  CAS  Google Scholar 

  70. Rose DK, Cohen MM, Wigglesworth DF et al (1994) Critical respiratory events in the postanesthesia care unit. Patient, surgical, and anesthetic factors. Anesthesiology 81:410–418

    Article  PubMed  CAS  Google Scholar 

  71. Rosenbloom AL, Silverstein JH, Lezotte DC et al (1981) Limited joint mobility in childhood diabetes mellitus indicates increased risk for microvascular disease. N Engl J Med 305:191–194

    Article  PubMed  CAS  Google Scholar 

  72. Rothhammer A (1998) Tissue oxygenation: physiological and pathophysiologic aspects in intensive care. Anasthesiol Intensivmed Notfallmed Schmerzther 33(Suppl 2):54–59

    Article  Google Scholar 

  73. Saitoh Y, Hattori H, Sanbe N et al (2005) Delayed recovery of vecuronium neuromuscular block in diabetic patients during sevoflurane anesthesia. Can J Anaesth 52:467–473

    Article  PubMed  Google Scholar 

  74. Simmons RK, Coleman RL, Price HC et al (2009) Performance of the UK prospective diabetes study risk engine and the Framingham risk equations in estimating cardiovascular disease in the EPIC- Norfolk Cohort. Diabetes Care 32:708–713

    Article  PubMed  Google Scholar 

  75. Sobotka PA, Liss HP, Vinik AI (1986) Impaired hypoxic ventilatory drive in diabetic patients with autonomic neuropathy. J Clin Endocrinol Metab 62:658–663

    Article  PubMed  CAS  Google Scholar 

  76. Tantucci C, Bottini P, Fiorani C et al (2001) Cerebrovascular reactivity and hypercapnic respiratory drive in diabetic autonomic neuropathy. J Appl Physiol 90:889–896

    PubMed  CAS  Google Scholar 

  77. Tantucci C, Scionti L, Bottini P et al (1997) Influence of autonomic neuropathy of different severities on the hypercapnic drive to breathing in diabetic patients. Chest 112:145–153

    Article  PubMed  CAS  Google Scholar 

  78. Thorell A, Efendic S, Gutniak M et al (1993) Development of postoperative insulin resistance is associated with the magnitude of operation. Eur J Surg 159:593–599

    PubMed  CAS  Google Scholar 

  79. Thorell A, Nygren J, Ljungqvist O (1999) Insulin resistance: a marker of surgical stress. Curr Opin Clin Nutr Metab Care 2:69–78

    Article  PubMed  CAS  Google Scholar 

  80. Van Den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367

    Article  Google Scholar 

  81. Venn RM, Bryant A, Hall GM et al (2001) Effects of dexmedetomidine on adrenocortical function, and the cardiovascular, endocrine and inflammatory responses in post-operative patients needing sedation in the intensive care unit. Br J Anaesth 86:650–656

    Article  PubMed  CAS  Google Scholar 

  82. Vinik AI, Maser RE, Mitchell BD et al (2003) Diabetic autonomic neuropathy. Diabetes Care 26:1553–1579

    Article  PubMed  Google Scholar 

  83. Vinik AI, Ziegler D (2007) Diabetic cardiovascular autonomic neuropathy. Circulation 115:387–397

    Article  PubMed  Google Scholar 

  84. Warner ME, Contreras MG, Warner MA et al (1998) Diabetes mellitus and difficult laryngoscopy in renal and pancreatic transplant patients. Anesth Analg 86:516–519

    PubMed  CAS  Google Scholar 

  85. Wickley PJ, Shiga T, Murray PA et al (2007) Propofol modulates Na+-Ca2+ exchange activity via activation of protein kinase C in diabetic cardiomyocytes. Anesthesiology 106:302–311

    Article  PubMed  CAS  Google Scholar 

  86. Wicklmayr M, Rett K, Dietze G et al (1988) Comparison of metabolic clearance rates of MCT/LCT and LCT emulsions in diabetics. JPEN J Parenter Enteral Nutr 12:68–71

    Article  PubMed  CAS  Google Scholar 

  87. Williams JG, Morris AI, Hayter RC et al (1984) Respiratory responses of diabetics to hypoxia, hypercapnia, and exercise. Thorax 39:529–534

    Article  PubMed  CAS  Google Scholar 

  88. Yki-Jarvinen H (1994) Pathogenesis of non-insulin-dependent diabetes mellitus. Lancet 343:91–95

    Article  PubMed  CAS  Google Scholar 

  89. Zander JF, Risse A (2009) Peri-operative adjustment and treatment of diabetes mellitus. Orthopade 38:818–827

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pestel.

Additional information

Herrn Professor Dr. med. A. Rothhammer zum 65. Geburtstag gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pestel, G., Closhen, D., Zimmermann, A. et al. Aspekte der perioperativen Behandlung von Diabetespatienten. Anaesthesist 62, 9–19 (2013). https://doi.org/10.1007/s00101-012-2089-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-012-2089-y

Schlüsselwörter

Keywords

Navigation