Skip to main content
Log in

„Target-controlled infusion“

Klinische Relevanz und Besonderheiten im Umgang mit pharmakokinetischen Modellen

Target-controlled infusion

Clinical relevance and special features when using pharmacokinetic models

  • Klinische Pharmakologie
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

„Target-controlled infusion“ (TCI) ist seit der kommerziellen Einführung im Jahr 1996 zu einer etablierten Applikationsform intravenöser Anästhetika geworden. Zusätzliche Optionen der modernen TCI-Systeme wie die Wahl zwischen unterschiedlichen Modellen und Applikationsmodi verkomplizieren allerdings den Gebrauch für den wenig erfahrenen Benutzer. Die vorliegende Übersicht beschreibt die Unterschiede der pharmakokinetischen Modelle, der Applikationsmodi und den Einfluss von Kovariaten sowie die Konsequenzen für die Dosierung mit dem Ziel, dem Benutzer von modernen TCI-Systemen die zugrunde liegenden wissenschaftlichen Konzepte und deren Bedeutung für die klinische Praxis zu vermitteln.

Abstract

Since its commercial introduction in 1996, target-controlled infusion (TCI) has become an established technique for administration of intravenous anaesthetics. Modern TCI systems, however, are characterized by an increasing number of additional options and features, such as the choice between different pharmacokinetic models and modes of application, which may confuse the less experienced user. This review describes the differences between pharmacokinetic models, modes of application and the effect of covariates as well as the consequences for dosing. The aim is to explicate for the user of modern TCI systems the underlying scientific concepts and the relevance for clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Absalom A, Amutike D, Lal A et al (2003) Accuracy of the ‚Paedfusor‘ in children undergoing cardiac surgery or catheterization. Br J Anaesth 91:507–513

    Article  PubMed  CAS  Google Scholar 

  2. Albertin A, Poli D, La Colla L et al (2007) Predictive performance of „Servin’s formula“ during BIS-guided propofol-remifentanil target-controlled infusion in morbidly obese patients. Br J Anaesth 98:66–75

    Article  PubMed  CAS  Google Scholar 

  3. Avram MJ, Krejcie TC (2003) Using front-end kinetics to optimize target-controlled drug infusions. Anesthesiology 99:1078–1086

    Article  PubMed  Google Scholar 

  4. Barakat AR, Sutcliffe N, Schwab M (2007) Effect site concentration during propofol TCI sedation: a comparison of sedation score with two pharmacokinetic models. Anaesthesia 62:661–666

    Article  PubMed  CAS  Google Scholar 

  5. Chiou WL (1989) The phenomenon and rationale of marked dependence of drug concentration on blood sampling site. Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (part I). Clin Pharmacokinet 17:175–199

    Article  PubMed  CAS  Google Scholar 

  6. Chiou WL (1980) Potential effect of early blood sampling schedule on calculated pharmacokinetic parameters of drugs after intravenous administration. J Pharm Sci 69:867–869

    Article  PubMed  CAS  Google Scholar 

  7. Chiou WL (1979) Potential pitfalls in the conventional pharmacokinetic studies: effects of the initial mixing of drug in blood and the pulmonary first-pass elimination. J Pharmacokinet Biopharm 7:527–536

    Article  PubMed  CAS  Google Scholar 

  8. Egan TD, Shafer SL (2003) Target-controlled infusions for intravenous anesthetics: surfing USA not! Anesthesiology 99:1039–1041

    Article  PubMed  Google Scholar 

  9. Enlund M (2008) TCI: Target controlled infusion, or totally confused infusion? Call for an optimised population based pharmacokinetic model for propofol. Ups J Med Sci 113:161–170

    Article  PubMed  Google Scholar 

  10. Gepts E, Camu F, Cockshott ID, Douglas EJ (1987) Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg 66:1256–1263

    Article  PubMed  CAS  Google Scholar 

  11. Gepts E, Shafer SL, Camu F et al (1995) Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology 83:1194–1204

    Article  PubMed  CAS  Google Scholar 

  12. Gibaldi M, Perrier D (1982) Pharmacokinetics, 2nd edn. Dekker, New York Basel

  13. Glen JB, Servin F (2009) Evaluation of the predictive performance of four pharmacokinetic models for propofol. Br J Anaesth 102:626–632

    Article  PubMed  CAS  Google Scholar 

  14. Henthorn TK, Avram MJ, Krejcie TC et al (1992) Minimal compartmental model of circulatory mixing of indocyanine green. Am J Physiol 262:H903–H910

    PubMed  CAS  Google Scholar 

  15. Holford NH, Sheiner LB (1982) Kinetics of pharmacologic response. Pharmacol Ther 16:143–166

    Article  PubMed  CAS  Google Scholar 

  16. James WPT (1976) Research on obesity. Her Majesty’s Stationary Office, London

  17. Janmahasatian S, Duffull SB, Ash S et al (2005) Quantification of lean bodyweight. Clin Pharmacokinet 44:1051–1065

    Article  PubMed  Google Scholar 

  18. Kataria BK, Ved SA, Nicodemus HF et al (1994) The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology 80:104–122

    Article  PubMed  CAS  Google Scholar 

  19. Krejcie TC, Henthorn TK, Niemann CU et al (1996) Recirculatory pharmacokinetic models of markers of blood, extracellular fluid and total body water administered concomitantly. J Pharmacol Exp Ther 278:1050–1057

    PubMed  CAS  Google Scholar 

  20. Lemmens HJ, Brodsky JB, Bernstein DP (2005) Estimating ideal body weight – A new formula. Obes Surg 15:1082–1083

    Article  PubMed  Google Scholar 

  21. Maitre PO, Vozeh S, Heykants J et al (1987) Population pharmacokinetics of alfentanil: the average dose-plasma concentration relationship and interindividual variability in patients. Anesthesiology 66:3–12

    Article  PubMed  CAS  Google Scholar 

  22. Marsh B, White M, Morton N, Kenny GN (1991) Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 67:41–48

    Article  PubMed  CAS  Google Scholar 

  23. Minto CF, Schnider TW, Egan TD et al (1997) Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology 86:10–23

    Article  PubMed  CAS  Google Scholar 

  24. Minto CF, Schnider TW, Gregg KM et al (2003) Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology 99:324–333

    Article  PubMed  Google Scholar 

  25. Moerman AT, Herregods LL, de Vos MM et al (2009) Manual versus target-controlled infusion remifentanil administration in spontaneously breathing patients. Anesth Analg 108:828–834

    Article  PubMed  Google Scholar 

  26. Schnider TW, Minto CF, Gambus PL et al (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88:1170–1182

    Article  PubMed  CAS  Google Scholar 

  27. Schnider TW, Minto CF, Shafer SL et al (1999) The influence of age on propofol pharmacodynamics. Anesthesiology 90:1502–1516

    Article  PubMed  CAS  Google Scholar 

  28. Schraag S, Kreuer S, Bruhn J et al (2008) Target-controlled infusion (TCI) – Ein Konzept mit Zukunft? Standortbestimmung, Handlungsempfehlungen und Blick in die Zukunft. Anaesthesist 57:223–230

    Article  PubMed  CAS  Google Scholar 

  29. Schuttler J, Ihmsen H (2000) Population pharmacokinetics of propofol: a multicenter study. Anesthesiology 92:727–738

    Article  PubMed  CAS  Google Scholar 

  30. Schwilden H (1981) A general method for calculating the dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol 20:379–386

    Article  PubMed  CAS  Google Scholar 

  31. Servin F, Farinotti R, Haberer JP, Desmonts JM (1993) Propofol infusion for maintenance of anesthesia in morbidly obese patients receiving nitrous oxide. A clinical and pharmacokinetic study. Anesthesiology 78:657–665

    Article  PubMed  CAS  Google Scholar 

  32. Struys MM, Coppens MJ, De Neve N et al (2007) Influence of administration rate on propofol plasma-effect site equilibration. Anesthesiology 107:386–396

    Article  PubMed  CAS  Google Scholar 

  33. Struys MM, De Smet T, Depoorter B et al (2000) Comparison of plasma compartment versus two methods for effect compartment – controlled target-controlled infusion for propofol. Anesthesiology 92:399–406

    Article  PubMed  CAS  Google Scholar 

  34. Tuk B, Danhof M, Mandema JW (1997) The impact of arteriovenous concentration differences on pharmacodynamic parameter estimates. J Pharmacokinet Biopharm 25:39–62

    Article  PubMed  CAS  Google Scholar 

  35. White M, Kenny GN, Schraag S (2008) Use of target controlled infusion to derive age and gender covariates for propofol clearance. Clin Pharmacokinet 47:119–127

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Alle Autoren sind Mitglied eines von Fresenius-Kabi Deutschland GmbH unterstützten „Target-Controlled Infusion Expert Board“. Dieses Projekt wurde durch ein Grant der Fresenius-Kabi unterstützt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ihmsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihmsen, H., Schraag, S., Kreuer, S. et al. „Target-controlled infusion“. Anaesthesist 58, 708–715 (2009). https://doi.org/10.1007/s00101-009-1575-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-009-1575-3

Schlüsselwörter

Keywords

Navigation