Skip to main content

Advertisement

Log in

Intensity modulated radiotherapy as neoadjuvant chemoradiation for the treatment of patients with locally advanced pancreatic cancer

Outcome analysis and comparison with a 3D-treated patient cohort

Intensitätsmodulierte Radiotherapie als neoadjuvante Radiochemotherapie zur Behandlung von Patienten mit lokal fortgeschrittenem Pankreaskarzinom

Ergebnisanalyse und Vergleich mit einer Patientenkohorte mit 3-D-Strahlentherapie

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

To evaluate outcome after intensity modulated radiotherapy (IMRT) compared to 3D conformal radiotherapy (3D-RT) as neoadjuvant treatment in patients with locally advanced pancreatic cancer (LAPC).

Materials and methods

In total, 57 patients with LAPC were treated with IMRT and chemotherapy. A median total dose of 45 Gy to the PTV_baseplan and 54 Gy to the PTV_boost in single doses of 1.8 Gy for the PTV_baseplan and median single doses of 2.2 Gy in the PTV_boost were applied. Outcomes were evaluated and compared to a large cohort of patients treated with 3D-RT.

Results

Overall treatment was well tolerated in all patients and IMRT could be completed without interruptions. Median overall survival was 11 months (range 5–37.5 months). Actuarial overall survival at 12 and 24 months was 36 % and 8 %, respectively. A significant impact on overall survival could only be observed for a decrease in CA 19-9 during treatment, patients with less pre-treatment CA 19-9 than the median, as well as weight loss during treatment. Local progression-free survival was 79 % after 6 months, 39 % after 12 months, and 13 % after 24 months. No factors significantly influencing local progression-free survival could be identified. There was no difference in overall and progression-free survival between 3D-RT and IMRT. Secondary resectability was similar in both groups (26 % vs. 28 %). Toxicity was comparable and consisted mainly of hematological toxicity due to chemotherapy.

Conclusion

IMRT leads to a comparable outcome compared to 3D-RT in patients with LAPC. In the future, the improved dose distribution, as well as advances in image-guided radiotherapy (IGRT) techniques, may improve the use of IMRT in local dose escalation strategies to potentially improve outcome.

Zusammenfassung

Hintergrund

Es handelt sich um eine Analyse der Ergebnisse nach intensitätsmodulierter Radiotherapie (IMRT) im Vergleich zur 3-D-konformalen Strahlentherapie (3-D-RT) bei der neoadjuvanten Behandlung von Patienten mit lokal fortgeschrittenem Pankreaskarzinom (LAPC).

Material und Methoden

57 Patienten mit LAPC wurden mittels IMRT und Chemotherapie behandelt. Eine mediane Gesamtdosis von 45 Gy auf das geplante Zielvolumen, PTV_baseplan, und 54 Gy auf das PTV_boost in Einzeldosen von 1,8 Gy für PTV_baseplan und mediane Einzeldosen von 2,2 Gy auf das PTV_boost wurden appliziert. Überleben sowie lokale Kontrolle wurden analysiert und eine vergleichende Analyse mit einer großen Kohorte von Patienten durchgeführt, welche mittels 3-D-RT behandelt wurden.

Ergebnisse

Die Behandlung wurde insgesamt von allen Patienten gut toleriert und konnte ohne Unterbrechungen durchgeführt werden. Das mediane Gesamtüberleben lag bei 11 Monaten (Spannbreite: 5–37,5 Monate). Das aktuarische Gesamtüberleben nach 12 und 24 Monaten lag bei 36 bzw. 8 %. Als signifikanter Einflussfaktor auf das Gesamtüberleben wurden lediglich die Abnahme des CA 19-9 unter Therapie, ein niedrigeres CA 19-9 als der Median vor Therapie sowie der Gewichtsverlust während der Therapie identifiziert. Das lokale progressionsfreie Überleben lag bei 79 % nach 6 Monaten, bei 39 % nach 12 Monaten und bei 13 % nach 24 Monaten. Es konnten keine signifikanten Einflussfaktoren für das lokale progressionsfreie Überleben identifiziert werden. Sowohl das Gesamtüberleben als auch das progressionsfreie Überleben unterschieden sich nicht zwischen der IMRT- und der 3-D-RT-Kohorte. Die sekundäre Resektabilität war in beiden Gruppen vergleichbar (26 vs. 28 %). Die Toxizität war vergleichbar und bestand vorwiegend aus hämatologischen Nebenwirkungen durch die Chemotherapie.

Schlussfolgerung

Die klinischen Ergebnisse nach IMRT bei der Behandlung des LAPC sind vergleichbar mit der 3-D-RT. In Zukunft könnten jedoch eine verbesserte Dosisverteilung sowie Fortschritte in der Bildsteuerung als „image-guided radiotherapy“ (IGRT) den Einsatz der IMRT für Strategien zur Dosiseskalation optimieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reference

  1. Gillen S, Schuster T, Meyer Zum BC et al (2010) Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med 7:e1000267

    Article  PubMed  Google Scholar 

  2. Habermehl D, Lindel K, Rieken S et al (2012) Chemoradiation in patients with unresectable extrahepatic and hilar cholangiocarcinoma or at high risk for disease recurrence after resection: analysis of treatment efficacy and failure in patients receiving postoperative or primary chemoradiation. Strahlenther Onkol 188:795–801

    Article  PubMed  CAS  Google Scholar 

  3. Milano MT, Garofalo MC, Chmura SJ et al (2006) Intensity-modulated radiation therapy in the treatment of gastric cancer: early clinical outcome and dosimetric comparison with conventional techniques. Br J Radiol 79:497–503

    Article  PubMed  CAS  Google Scholar 

  4. Milano MT, Jani AB, Farrey KJ et al (2005) Intensity-modulated radiation therapy (IMRT) in the treatment of anal cancer: toxicity and clinical outcome. Int J Radiat Oncol Biol Phys 63:354–361

    Article  PubMed  Google Scholar 

  5. Chandra A, Guerrero TM, Liu HH et al (2005) Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer. Radiother Oncol 77:247–253

    Article  PubMed  Google Scholar 

  6. Gomez DR, Tucker SL, Martel MK et al (2012) Predictors of high-grade esophagitis after definitive three-dimensional conformal therapy, intensity-modulated radiation therapy, or proton beam therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys 84:1010–1016

    Article  PubMed  Google Scholar 

  7. Jiang ZQ, Yang K, Komaki R et al (2012) Long-term clinical outcome of intensity-modulated radiotherapy for inoperable non-small cell lung cancer: the MD Anderson experience. Int J Radiat Oncol Biol Phys 83:332–339

    Article  PubMed  Google Scholar 

  8. Lin SH, Wang L, Myles B et al (2012) Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs intensity-modulated radiotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys

  9. Wang SL, Liao Z, Liu H et al (2006) Intensity-modulated radiation therapy with concurrent chemotherapy for locally advanced cervical and upper thoracic esophageal cancer. World J Gastroenterol 12:5501–5508

    PubMed  Google Scholar 

  10. Welsh J, Gomez D, Palmer MB et al (2011) Intensity-modulated proton therapy further reduces normal tissue exposure during definitive therapy for locally advanced distal esophageal tumors: a dosimetric study. Int J Radiat Oncol Biol Phys 81:1336–1342

    Article  PubMed  Google Scholar 

  11. Welsh J, Palmer MB, Ajani JA et al (2012) Esophageal cancer dose escalation using a simultaneous integrated boost technique. Int J Radiat Oncol Biol Phys 82:468–474

    Article  PubMed  Google Scholar 

  12. Zhang X, Zhao KL, Guerrero TM et al (2008) Four-dimensional computed tomography-based treatment planning for intensity-modulated radiation therapy and proton therapy for distal esophageal cancer. Int J Radiat Oncol Biol Phys 72:278–287

    Article  PubMed  Google Scholar 

  13. Milano MT, Chmura SJ, Garofalo MC et al (2004) Intensity-modulated radiotherapy in treatment of pancreatic and bile duct malignancies: toxicity and clinical outcome. Int J Radiat Oncol Biol Phys 59:445–453

    Article  PubMed  Google Scholar 

  14. Yovino S, Poppe M, Jabbour S et al (2011) Intensity-modulated radiation therapy significantly improves acute gastrointestinal toxicity in pancreatic and ampullary cancers. Int J Radiat Oncol Biol Phys 79:158–162

    Article  PubMed  Google Scholar 

  15. Crane CH, Winter K, Regine WF et al (2009) Phase II study of bevacizumab with concurrent capecitabine and radiation followed by maintenance gemcitabine and bevacizumab for locally advanced pancreatic cancer: Radiation Therapy Oncology Group RTOG 0411. J Clin Oncol 27:4096–4102

    Article  PubMed  CAS  Google Scholar 

  16. Ben Josef E, Shields AF, Vaishampayan U et al (2004) Intensity-modulated radiotherapy (IMRT) and concurrent capecitabine for pancreatic cancer. Int J Radiat Oncol Biol Phys 59:454–459

    Article  Google Scholar 

  17. Krempien R, Muenter MW, Huber PE et al (2005) Randomized phase II—study evaluating EGFR targeting therapy with cetuximab in combination with radiotherapy and chemotherapy for patients with locally advanced pancreatic cancer—PARC: study protocol [ISRCTN56652283]. BMC Cancer 5:131

    Article  PubMed  CAS  Google Scholar 

  18. Habermehl D, Kessel K, Welzel T et al (2012) Neoadjuvant chemoradiation with Gemcitabine for locally advanced pancreatic cancer. Radiat Oncol 7:28

    Article  PubMed  CAS  Google Scholar 

  19. Sangalli G, Passoni P, Cattaneo GM et al (2011) Planning design of locally advanced pancreatic carcinoma using 4DCT and IMRT/IGRT technologies. Acta Oncol 50:72–80

    Article  PubMed  Google Scholar 

  20. Ben Josef E, Schipper M, Francis IR et al (2012) A phase I/II trial of intensity modulated radiation (IMRT) dose escalation with concurrent fixed-dose rate gemcitabine (FDR-G) in patients with unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys

  21. Yovino S, Maidment BW III, Herman JM et al (2012) Analysis of local control in patients receiving IMRT for resected pancreatic cancers. Int J Radiat Oncol Biol Phys 83:916–920

    Article  PubMed  Google Scholar 

  22. Li D, Xie K, Wolff R, Abbruzzese JL (2004) Pancreatic cancer. Lancet 363:1049–1057

    Article  PubMed  CAS  Google Scholar 

  23. Buchler MW, Kleeff J, Friess H (2007) Surgical treatment of pancreatic cancer. J Am Coll Surg 205:S81–S86

    Article  PubMed  Google Scholar 

  24. Allison DC, Piantadosi S, Hruban RH et al (1998) DNA content and other factors associated with ten-year survival after resection of pancreatic carcinoma. J Surg Oncol 67:151–159

    Article  PubMed  CAS  Google Scholar 

  25. Allison DC, Bose KK, Hruban RH et al (1991) Pancreatic cancer cell DNA content correlates with long-term survival after pancreatoduodenectomy. Ann Surg 214:648–656

    Article  PubMed  CAS  Google Scholar 

  26. Sohn TA, Yeo CJ, Cameron JL et al (2000) Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg 4:567–579

    Article  PubMed  CAS  Google Scholar 

  27. Howard TJ, Krug JE, Yu J et al (2006) A margin-negative R0 resection accomplished with minimal postoperative complications is the surgeon’s contribution to long-term survival in pancreatic cancer. J Gastrointest Surg 10:1338–1345

    Article  PubMed  Google Scholar 

  28. Moertel CG, Frytak S, Hahn RG et al (1981) Therapy of locally unresectable pancreatic carcinoma: a randomized comparison of high dose (6000 rads) radiation alone, moderate dose radiation (4000 rads + 5-fluorouracil), and high dose radiation + 5-fluorouracil: The Gastrointestinal Tumor Study Group. Cancer 48:1705–1710

    Article  PubMed  CAS  Google Scholar 

  29. Varadhachary GR, Wolff RA, Crane CH et al (2008) Preoperative gemcitabine and cisplatin followed by gemcitabine-based chemoradiation for resectable adenocarcinoma of the pancreatic head. J Clin Oncol 26:3487–3495

    Article  PubMed  CAS  Google Scholar 

  30. Varadhachary GR, Tamm EP, Abbruzzese JL et al (2006) Borderline resectable pancreatic cancer: definitions, management, and role of preoperative therapy. Ann Surg Oncol 13:1035–1046

    Article  PubMed  Google Scholar 

  31. Murphy JD, Adusumilli S, Griffith KA et al (2007) Full-dose gemcitabine and concurrent radiotherapy for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 68:801–808

    Article  PubMed  CAS  Google Scholar 

  32. Girard N, Mornex F, Bossard N et al (2010) Estimating optimal dose of twice-weekly gemcitabine for concurrent chemoradiotherapy in unresectable pancreatic carcinoma: mature results of GEMRT-01 Phase I trial. Int J Radiat Oncol Biol Phys 77:1426–1432

    Article  PubMed  CAS  Google Scholar 

  33. Shibuya K, Oya N, Fujii T et al (2010) Phase II study of radiation therapy combined with weekly low-dose gemcitabine for locally advanced, unresectable pancreatic cancer. Am.J.Clin.Oncol

  34. Murphy JD, Adusumilli S, Griffith KA et al (2007) Full-dose gemcitabine and concurrent radiotherapy for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 68:801–808

    Article  PubMed  CAS  Google Scholar 

  35. Crane CH, Wolff RA, Abbruzzese JL et al (2001) Combining gemcitabine with radiation in pancreatic cancer: understanding important variables influencing the therapeutic index. Semin Oncol 28:25–33

    Article  PubMed  CAS  Google Scholar 

  36. Mukherjee S, Hurt CN, Bridgewater J et al (2013) Gemcitabine-based or capecitabine-based chemoradiotherapy for locally advanced pancreatic cancer (SCALOP): a multicentre, randomised, phase 2 trial. Lancet Oncol 14:317–326

    Article  PubMed  CAS  Google Scholar 

  37. Haddock MG, Swaminathan R, Foster NR et al (2007) Gemcitabine, cisplatin, and radiotherapy for patients with locally advanced pancreatic adenocarcinoma: results of the North Central Cancer Treatment Group Phase II Study N9942. J Clin Oncol 25:2567–2572

    Article  PubMed  CAS  Google Scholar 

  38. Pingpank JF, Hoffman JP, Ross EA et al (2001) Effect of preoperative chemoradiotherapy on surgical margin status of resected adenocarcinoma of the head of the pancreas. J Gastrointest Surg 5:121–130

    Article  PubMed  CAS  Google Scholar 

  39. Kessel KA, Habermehl D, Bohn C et al (2012) Database supported electronic retrospective analyses in radiation oncology: establishing a workflow using the example of pancreatic cancer. Strahlenther Onkol 188:1119–1124

    Article  PubMed  CAS  Google Scholar 

  40. Kessel KA, Habermehl D, Jäger A, Floca RO et al (2013) Development and validation of automatic tools for interactive recurrence analysis in radiation therapy: optimization of treatment algorithms for locally advanced pancreatic cancer. Radiat Oncol 8:138

    Article  Google Scholar 

  41. Golden DW, Novak CJ, Minsky BD, Liauw SL (2012) Radiation dose ≥ 54 Gy and CA 19-9 response are associated with improved survival for unresectable, non-metastatic pancreatic cancer treated with chemoradiation. Radiat Oncol 7:156

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Sabine Kuhn and her team for excellent patient care.

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.E. Combs MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combs, S., Habermehl, D., Kessel, K. et al. Intensity modulated radiotherapy as neoadjuvant chemoradiation for the treatment of patients with locally advanced pancreatic cancer. Strahlenther Onkol 189, 738–744 (2013). https://doi.org/10.1007/s00066-013-0391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0391-5

Keywords

Schlüsselwörter

Navigation