Skip to main content
Log in

Intrapericardial procedures for cardiac regeneration by stem cells

Need for minimal invasive access (AttachLifter) to the normal pericardial cavity

Intraperikardiale Verfahren zur kardialen Regeneration durch Stammzellen

Notwendigkeit eines minimal-invasiven Zugangs (AttachLifter) in den normalen Herzbeutel

  • Main topic/CME
  • Published:
Herz Aims and scope Submit manuscript

Abstract

In view of the only modest functional and anatomical improvements achieved by bone marrow-derived cell transplantation in patients with heart disease, the question was addressed whether the intracoronary, transcoronary–venous, and intramyocardial delivery routes are adequate. It is hypothesized that an intrapericardial delivery of stem cells or activators of resident cardiac stem cells increases therapeutic benefits. From such an intrapericardial depot, cells or modulating factors, such as thymosin β4 or Ac-SDKP, are expected to reach the myocardium with sustained kinetics. Novel tools which provide access to the pericardial space even in the absence of pericardial effusion are, therefore, described. When the pericardium becomes attached to the suction head (monitored by an increase in negative pressure), the pericardium is lifted from the epicardium (“AttachLifter”). The opening of the suction head (“Attacher”) is narrowed by flexible clamps which grab the tissue and improve the vacuum seal in the case of uneven tissue. A ridge, i.e.,“needle guidance”, on the suction head excludes injury to the epicardium, whereby the pericardium is punctured by a needle which resides outside the suction head. A fiberscope can be used to inspect the pericardium prior to puncture. Based on these procedures, the role of the pericardial space and the presence of pericardial effusion in cardiac regeneration can be assessed.

Zusammenfassung

Angesichts der nur moderaten funktionellen und anatomischen Verbesserungen durch eine Stammzelltransplantation bei Herzerkrankungen stellt sich die Frage, ob die intrakoronaren, transkoronar-venösen und intramyokardialen Applikationswege ausreichen. Wir postulieren, dass eine intraperikardiale Applikation von Stammzellen bzw. Aktivatoren der residenten kardialen Stammzellen den therapeutischen Nutzen erhöht. Aus dem intraperikardialen Depot erreichen Zellen bzw. modulierende Faktoren (z. B. Thymosin β4, AC-SDKP) das Myokard in einer protrahierten Kinetik. Daher werden neue Instrumente beschrieben, die den Zugang in den Herzbeutel auch in Abwesenheit eines Perikardergusses ermöglichen. Das Perikard wird an den Ansaugkopf eines solchen Instruments (AttachLifter) angeheftet, die Anheftung wird überwacht durch einen Anstieg des Unterdrucks. Dabei wird Perikard vom Epikard angehoben („Lifter“), die Öffnung des Ansaugkopfes („Attacher“) wird durch flexible Klemmen eingeengt, die das Gewebe festhalten und einen Vakuumverlust bei unebenem Gewebe verhindern. Eine geeignete Nadelführung am Ansaugkopf verhindert eine Verletzung des Epikards während der Perikardpunktion (Nadel befindet sich außerhalb des Ansaugkopfes). Zur Beurteilung der Perikardoberfläche kann vor der Punktion eine Fiberglasoptik (Perikardioskop) eingesetzt werden. Basierend auf diesen Verfahren kann die Beschaffenheit des Perikards mit oder ohne Perikarderguss bei der kardialen Regeneration bewertet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdel-Latif A, Bolli R, Tleyjeh IM et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    Article  PubMed  Google Scholar 

  2. Alter P, Grimm W, Vollrath A et al (2006) Heart rate variability in patients with cardiac hypertrophy–relation to left ventricular mass and etiology. Am Heart J 151:829–836

    Article  PubMed  Google Scholar 

  3. Alter P, Rupp H, Maisch B (2006) Activated nuclear transcription factor kappaB in patients with myocarditis and dilated cardiomyopathy–relation to inflammation and cardiac function. Biochem Biophys Res Commun 339:180–187

    Article  CAS  PubMed  Google Scholar 

  4. Alter P, Rupp H, Maisch B (2008) Assessment and relevance of ventricular wall stress in heart failure. Eur Heart J 29:2316

    Article  PubMed  Google Scholar 

  5. Alter P, Rupp H, Rominger MB et al (2009) Depression of heart rate variability in patients with increased ventricular wall stress. Pacing Clin Electrophysiol 32(Suppl 1):S26–S31

    Article  PubMed  Google Scholar 

  6. Alter P, Rupp H, Rominger MB et al (2008) A new methodological approach to assess cardiac work by pressure-volume and stress-length relations in patients with aortic valve stenosis and dilated cardiomyopathy. Pflugers Arch 455:627–636

    Article  CAS  PubMed  Google Scholar 

  7. Alter P, Rupp H, Rominger MB et al (2008) B-type natriuretic peptide and wall stress in dilated human heart. Mol Cell Biochem 314:179–191

    Article  CAS  PubMed  Google Scholar 

  8. Alter P, Rupp H, Rominger MB et al (2007) Relation of B-type natriuretic peptide to left ventricular wall stress as assessed by cardiac magnetic resonance imaging in patients with dilated cardiomyopathy. Can J Physiol Pharmacol 85:790–799

    Article  CAS  PubMed  Google Scholar 

  9. Baek SH, Hrabie JA, Keefer LK et al (2002) Augmentation of intrapericardial nitric oxide level by a prolonged-release nitric oxide donor reduces luminal narrowing after porcine coronary angioplasty. Circulation 105:2779–2784

    Article  CAS  PubMed  Google Scholar 

  10. Benetti F, Penherrera E, Maldonado T et al (2010) Direct myocardial implantation of human fetal stem cells in heart failure patients: long-term results. Heart Surg Forum 13:E31–E35

    Article  PubMed  Google Scholar 

  11. Bittner RE, Schofer C, Weipoltshammer K et al (1999) Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl) 199:391–396

    Article  Google Scholar 

  12. Boulanger CM, Ezan E, Masse F et al (1998) The hemoregulatory peptide N-acetyl-ser-asp-lys-pro impairs angiotensin I-induced contractions in rat aorta. Eur J Pharmacol 363:153–156

    Article  CAS  PubMed  Google Scholar 

  13. Branco E, Fioretto ET, Cabral R et al (2009) Myocardial homing after intrapericardial infusion of bone marrow mononuclear cells. Arq Bras Cardiol 93:e50–e53

    Article  PubMed  Google Scholar 

  14. Carde P (1994) Inhibitors of hematopoiesis: from physiology to therapy. Bull Acad Natl Med 178:793–803

    CAS  PubMed  Google Scholar 

  15. Franz MR, Cima R, Wang D et al (1992) Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 86:968–978

    CAS  PubMed  Google Scholar 

  16. Hermans JJ, Essen H van, Struijker-Boudier HA et al (2002) Pharmacokinetic advantage of intrapericardially applied substances in the rat. J Pharmacol Exp Ther 301:672–678

    Article  CAS  PubMed  Google Scholar 

  17. Hosoda T, Kajstura J, Leri A, Anversa P (2010) Mechanisms of myocardial regeneration. Circ J 74:13–17

    Article  CAS  PubMed  Google Scholar 

  18. Ichim TE, Solano F, Lara F et al (2010) Combination stem cell therapy for heart failure. Int Arch Med 3:5

    PubMed  Google Scholar 

  19. Jackson JD, Yan Y, Ewel C, Talmadge JE (1996) Activity of acetyl-n-ser-asp-lys-pro (AcSDKP) on hematopoietic progenitor cells in short-term and long-term murine bone marrow cultures. Exp Hematol 24:475–481

    CAS  PubMed  Google Scholar 

  20. Kelly D, Mackenzie L, Hunter P et al (2006) Gene expression of stretch-activated channels and mechanoelectric feedback in the heart. Clin Exp Pharmacol Physiol 33:642–648

    Article  CAS  PubMed  Google Scholar 

  21. Kolettis TM, Kazakos N, Katsouras CS et al (2005) Intrapericardial drug delivery: pharmacologic properties and long-term safety in swine. Int J Cardiol 99:415–421

    Article  PubMed  Google Scholar 

  22. Kollar K, Cook MM, Atkinson K, Brooke G (2009) Molecular mechanisms involved in mesenchymal stem cell migration to the site of acute myocardial infarction. Int J Cell Biol 2009:904682

    PubMed  Google Scholar 

  23. Limana F, Bertolami C, Mangoni A et al (2010) Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J Mol Cell Cardiol 48:609–618

    Article  CAS  PubMed  Google Scholar 

  24. Limana F, Zacheo A, Mocini D et al (2007) Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res 101:1255–1265

    Article  CAS  PubMed  Google Scholar 

  25. Macris MP, Igo SR (1999) Minimally invasive access of the normal pericardium: initial clinical experience with a novel device. Clin Cardiol 22:I36–I39

    Article  CAS  PubMed  Google Scholar 

  26. Maisch B, Drude L (1992) Pericardioscopy—a new window to the heart in inflammatory heart diseases. Herz 17:71–78

    CAS  PubMed  Google Scholar 

  27. Maisch B, Ristic A, Pankuweit S (2002) Intrapericardial treatment of autoreactive pericardial effusion with triamcinolone. The way to avoid side effects of systemic corticosteroid therapy. Eur Heart J 23:1503–1508

    Article  CAS  PubMed  Google Scholar 

  28. Maisch B, Ristic A, Pankuweit S et al (2002) Neoplastic pericardial effusion. Efficacy and safety of intrapericardial treatment with cisplatin. Eur Heart J 23:1625–1631

    Article  CAS  PubMed  Google Scholar 

  29. Maisch B, Ristic A, Seferovic PM, Tsang T (2010) Interventional pericardiology. Springer, Berlin

  30. Maisch B, Ristic AD, Rupp H, Spodick DH (2001) Pericardial access using the PerDUCER and flexible percutaneous pericardioscopy. Am J Cardiol 88:1323–1326

    Article  CAS  PubMed  Google Scholar 

  31. Maisch B, Ristic AD, Seferovic PM, Spodick DH (2000) Intrapericardial treatment of autoreactive myocarditis with triamcinolon. Successful administration in patients with minimal pericardial effusion. Herz 25:781–786

    Article  CAS  PubMed  Google Scholar 

  32. Maisch B, Seferovic PM, Ristic AD et al (2004) Guidelines on the diagnosis and management of pericardial diseases executive summary; the task force on the diagnosis and management of pericardial diseases of the European society of cardiology. Eur Heart J 25:587–610

    Article  PubMed  Google Scholar 

  33. Malouf NN, Coleman WB, Grisham JW et al (2001) Adult-derived stem cells from the liver become myocytes in the heart in vivo. Am J Pathol 158:1929–1935

    CAS  PubMed  Google Scholar 

  34. Manner J (1992) The development of pericardial villi in the chick embryo. Anat Embryol (Berl) 186:379–385

    Google Scholar 

  35. Nagashima H, Kawashiro-Hirata N, Imamura K et al (2000) Congestive heart failure after peripheral blood stem cell transplantation: role of cytokines. Jpn Circ J 64:382–384

    Article  CAS  PubMed  Google Scholar 

  36. Orlic D, Kajstura J, Chimenti S et al (2001) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci 938:221–229; discussion 229–230

    Article  CAS  PubMed  Google Scholar 

  37. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  38. Orlic D, Kajstura J, Chimenti S et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349

    Article  CAS  PubMed  Google Scholar 

  39. Pankuweit S, Wadlich A, Meyer E et al (2000) Cytokine activation in pericardial fluids in different forms of pericarditis. Herz 25:748–754

    Article  CAS  PubMed  Google Scholar 

  40. Peng H, Carretero OA, Peterson EL, Rhaleb NE (2010) Ac-SDKP inhibits transforming growth factor-beta1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Am J Physiol Heart Circ Physiol 298:H1357–H1364

    Article  CAS  PubMed  Google Scholar 

  41. Peng H, Carretero OA, Raij L et al (2001) Antifibrotic effects of N-acetyl-seryl-aspartyl-lysyl-proline on the heart and kidney in aldosterone-salt hypertensive rats. Hypertension 37:794–800

    CAS  PubMed  Google Scholar 

  42. Platzbecker U, Klingel K, Thiede C et al (2001) Acute heart failure after allogeneic blood stem cell transplantation due to massive myocardial infiltration by cytotoxic T cells of donor origin. Bone Marrow Transplant 27:107–109

    Article  CAS  PubMed  Google Scholar 

  43. Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS (2009) Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med 13:866–886

    Article  CAS  PubMed  Google Scholar 

  44. Rasoul S, Carretero OA, Peng H et al (2004) Antifibrotic effect of Ac-SDKP and angiotensin-converting enzyme inhibition in hypertension. J Hypertens 22:593–603

    Article  CAS  PubMed  Google Scholar 

  45. Rhaleb NE, Peng H, Yang XP et al (2001) Long-term effect of N-acetyl-seryl-aspartyl-lysyl-proline on left ventricular collagen deposition in rats with 2-kidney, 1-clip hypertension. Circulation 103:3136–3141

    CAS  PubMed  Google Scholar 

  46. Rose M, Lee FA, Gollerkeri A et al (2000) The feasibility of high-dose chemotherapy in breast cancer patients with impaired left ventricular function. Bone Marrow Transplant 26:133–139

    Article  CAS  PubMed  Google Scholar 

  47. Rossdeutsch A, Smart N, Riley PR (2008) Thymosin beta4 and Ac-SDKP: tools to mend a broken heart. J Mol Med 86:29–35

    Article  CAS  PubMed  Google Scholar 

  48. Rupp H, Alter P, Maisch B (2002) Stem cells for the failing heart—does ACE inhibition interfere? J Clin Res 8:10–13

    Google Scholar 

  49. Rupp H, Rupp TP, Alter P, Maisch B (2006) Acute heart failure–basic pathomechanism and new drug targets. Herz 31:727–735

    Article  PubMed  Google Scholar 

  50. Rupp H, Rupp TP, Alter P, Maisch B (2010) Inverse shift in serum polyunsaturated and monounsaturated fatty acids is associated with adverse dilatation of the heart. Heart 96:595–598

    Article  CAS  PubMed  Google Scholar 

  51. Rupp H, Rupp TP, Maisch B (2005) Fatty acid oxidation inhibition with PPARalpha activation (FOXIB/PPARalpha) for normalizing gene expression in heart failure? Cardiovasc Res 66:423–426

    Article  CAS  PubMed  Google Scholar 

  52. Seferovic PM, Ristic AD, Maksimovic R et al (2000) Flexible percutaneous pericardioscopy: inherent drawbacks and recent advances. Herz 25:741–747

    Article  CAS  PubMed  Google Scholar 

  53. Smart N, Riley PR (2009) Derivation of epicardium-derived progenitor cells (EPDCs) from adult epicardium. Curr Protoc Stem Cell Biol Chapter 2:Unit2C

    Google Scholar 

  54. Smart N, Risebro CA, Melville AA et al (2007) Thymosin beta-4 is essential for coronary vessel development and promotes neovascularization via adult epicardium. Ann N Y Acad Sci 1112:171–188

    Article  CAS  PubMed  Google Scholar 

  55. Steele A, Jones OY, Gok F et al (2005) Stem-like cells traffic from heart ex vivo, expand in vitro, and can be transplanted in vivo. J Heart Lung Transplant 24:1930–1939

    Article  CAS  PubMed  Google Scholar 

  56. Strauer BE, Brehm M, Zeus T et al (2001) Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr 126:932–938

    Article  CAS  PubMed  Google Scholar 

  57. Strauer BE, Yousef M, Schannwell CM (2010) The acute and long-term effects of intracoronary stem cell transplantation in 191 patients with chronic heart failure: the STAR-heart study. Eur J Heart Fail 12:721–729

    Article  PubMed  Google Scholar 

  58. Tomita S, Li RK, Weisel RD et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–II256

    CAS  PubMed  Google Scholar 

  59. Urbanek K, Cesselli D, Rota M et al (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci U S A 103:9226–9231

    Article  CAS  PubMed  Google Scholar 

  60. Wang Z, Taylor LK, Denney WD, Hansen DE (1994) Initiation of ventricular extrasystoles by myocardial stretch in chronically dilated and failing canine left ventricle. Circulation 90:2022–2031

    CAS  PubMed  Google Scholar 

  61. Watanabe H, Murakami M, Ohba T et al (2008) TRP channel and cardiovascular disease. Pharmacol Ther 118:337–351

    Article  CAS  PubMed  Google Scholar 

  62. Weeke-Klimp A, Bax NA, Bellu AR et al (2010) Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes. J Mol Cell Cardiol 49:606–616

    Article  CAS  PubMed  Google Scholar 

  63. Winter EM, Gittenberger-de Groot AC (2007) Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci 64:692–703

    Article  CAS  PubMed  Google Scholar 

  64. Xiao YF, Sigg DC, Ujhelyi MR et al (2008) Pericardial delivery of omega-3 fatty acid: a novel approach to reducing myocardial infarct sizes and arrhythmias. Am J Physiol Heart Circ Physiol 294:H2212–H2218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Marburg Cardiac Promotion Society.

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rupp Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupp, H., Rupp, T., Alter, P. et al. Intrapericardial procedures for cardiac regeneration by stem cells. Herz 35, 458–466 (2010). https://doi.org/10.1007/s00059-010-3382-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-010-3382-7

Keywords

Schlüsselwörter

Navigation