Skip to main content
Log in

Regeneration of the vascular compartment

Gefäßregeneration

  • Schwerpunkt/CME
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Throughout life, damage to the vascular endothelium is pivotal in the development of cardiovascular disease. Therefore, a detailed understanding of the underlying mechanisms involved in endothelial cell restoration is of fundamental importance for preventive and therapeutic concepts in cardiovascular disease. The goal of regenerative medicine is the use of tissue-specific progenitor cells for a more effective repair process with reduction of fibrocellular remodelling, fibrosis and loss of functional properties.

According to the hitherto assumed primary model of endothelial regeneration only adjacent and intact mature endothelial cells replace damaged endothelium. Since Asahara and colleagues first described that a peripheral blood mononuclear cell population was able to differentiate into endothelial cells in vitro and incorporate into ischemic tissue at sites of angiogenesis in vivo, the model of endothelial regeneration has been extended. The majority of clinical trials on human cell therapy for ischemic vascular disease are based on cell surface antigen expression of CD34 or VEGFR2 to identify endothelial progenitor cells.

A precise characterization of the angiogenic properties of different subsets of endothelial regenerating cells and their course of action to gain sufficient long-term regeneration of the injured vessel is a necessary precondition before clinical trials of human cell therapy become a routine reality.

Zusammenfassung

Die Schädigung von Blutgefäßen, insbesondere der Endothelzellschicht, führt bei fehlender effektiver Gefäßregeneration zur Entstehung atherosklerotischer Läsionen. Dieser durch kardiovaskuläre Risikofaktoren beschleunigte Prozess bedingt degenerative Gefäßwandveränderungen, die mit einem Verlust funktioneller Gefäßeigenschaften einhergehen. Ein gesundes Gefäßendothel bzw. dessen Regeneration und Rekonstruktion nach Schädigung sind daher für die Vermeidung von Atherosklerose und Restenosierungsprozessen nach Koronarintervention von entscheidender Bedeutung. Ziel der regenerativen Medizin ist es, die zellvermittelte Regeneration geschädigter Gefäße als neues Konzept zur Prävention der Atherosklerose zu ermöglichen, insbesondere da eine dauerhafte Reduktion kardiovaskulärer Risikofaktoren im klinischen Alltag schwer zu erreichen ist.

Bislang ging man davon aus, dass die reparativen Mechanismen nach Endothelläsion durch die angrenzenden Endothelzellen via Proliferation und Wachstum per continuitatem erfolgen. Seit der Erstbeschreibung vaskulärer Stammzellen durch Asahara et al., der sog. zirkulierenden endothelialen Vorläuferzellen (EPCs), wurde das traditionelle Modell dahin gehend ergänzt, dass die aus dem Knochenmark stammenden, peripher zirkulierenden Vorläuferzellen als Quelle für den Ersatz untergegangener Endothelzellen fungieren. Die Mehrzahl klinischer Studien bezüglich humaner, zellbasierter Therapien ischämischer Gefäßerkrankungen wurde mit diesen Zellen durchgeführt.

Ein besseres Verständnis der Interaktionen endothelregenerierender somatischer, unreifer Progenitorzellen und tatsächlicher Stammzellen könnte die therapeutischen Ansätze zur endogenen Reparatur maßgeblich verbessern. Insbesondere die Aufklärung der Interaktionen unterschiedlicher zellulärer Subgruppen, die an der Endothelzellregeneration beteiligt sind und die Resolution der akuten Inflammation induzieren, ohne dass eine chronische Entzündung der Gefäßwand entstehen kann, ist daher eine relevante biologische Fragestellung und wichtig für das Verständnis sowie die Verhinderung der Atherosklerose und deren Folgekrankheiten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Azouz A, Razzaque MS, El-Hallak M, Taguchi T (2004) Immunoinflammatory responses and fibrogenesis. Med Electron Microsc 37:141–148

    Article  PubMed  Google Scholar 

  2. Mutsaers SE, Bishop JE, McGrouther G, Laurent GJ (1997) Mechanisms of tissue repair: from wound healing to fibrosis. Int J Biochem Cell Biol 29:5–17

    Article  CAS  PubMed  Google Scholar 

  3. Augustin HG, Kozian DH, Johnson RC (1994) Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays 16:901–906

    Article  CAS  PubMed  Google Scholar 

  4. Edgington TS (1995) Vascular biology: integrative molecular cell biology. FASEB J 9:841–842

    CAS  PubMed  Google Scholar 

  5. Rodgers GM (1998) Hemostatic properties of normal and perturbed vascular cells. FASEB J 2:116–123

    Google Scholar 

  6. Liu PP, Mak S, Stewart DJ (1999) Potential role of the microvasculature in progression of heart failure. Am J Cardiol 84:23L–26L

    Article  CAS  PubMed  Google Scholar 

  7. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  CAS  PubMed  Google Scholar 

  8. Urbich C, Dimmeler S (2005) Risk factors for coronary artery disease, circulating endothelial progenitor cells and the role of HMG-CoA reductase inhibitors. Kidney Int 67:1672–1676

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz SM, Benditt EP (1976) Clustering of replicating cells in aortic endothelium. Proc Natl Acad Sci U S A 73:651–653

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz SM, Gajdusek CM, Selden SC 3rd (1981) Vascular wall growth control: the role of the endothelium. Arteriosclerosis 1:107–126

    PubMed  Google Scholar 

  11. Haudenschild C, Studer A (1971) Early interactions between blood cells and severely damaged rabbit aorta. Eur J Clin Invest 2:1–7

    Article  CAS  PubMed  Google Scholar 

  12. Yoder MC (n d) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103

  13. Moroni G, Del Papa N, Moronetti LM et al (2005) Increased levels of circulating endothelial cells in chronic periaortitis as a marker of active disease. Kidney Int 68:562–568

    Article  CAS  PubMed  Google Scholar 

  14. Duda DG, Cohen KS, Scadden DT, Jain RK (2007) A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2:805–810

    Article  CAS  PubMed  Google Scholar 

  15. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  16. Pelosi E, Valtieri M, Coppola S et al (2002) Identification of the hemangioblast in postnatal life. Blood 100:3203–3208

    Article  CAS  PubMed  Google Scholar 

  17. Shi Q, Rafii S, Wu MH et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    CAS  PubMed  Google Scholar 

  18. Werner N, Junk S, Laufs U et al (2003) Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 93:e17–e24

    Article  CAS  PubMed  Google Scholar 

  19. De Palma M, Venneri MA, Roca C, Naldini L (2003) Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 9:789–795

    Article  Google Scholar 

  20. Rajantie I, Ilmonen M, Alminaite A et al (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104:2084–2086

    Article  CAS  PubMed  Google Scholar 

  21. Peichev M, Naiyer AJ, Pereira D et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  22. Friedrich EB, Walenta K, Scharlau J et al (2006) CD34−/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res 98:e20–e25

    Article  CAS  PubMed  Google Scholar 

  23. Werner N, Kosiol S, Schiegl T et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt-Lucke C, Rossig L, Fichtlscherer S et al (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111:2981–2987

    Article  PubMed  Google Scholar 

  25. Fadini GP, Miorin M, Facco M et al (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45:1449–1457

    Article  CAS  PubMed  Google Scholar 

  26. Mund JA, Ingram DA, Yoder MC, Case J (2009) Endothelial progenitor cells and cardiovascular cell-based therapies. Cytotherapy 11:103–113

    Article  PubMed  Google Scholar 

  27. Jujo K, Ii M, Losordo DW (2008) Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol 45:530–544

    Article  CAS  PubMed  Google Scholar 

  28. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169

    Article  PubMed  Google Scholar 

  29. Yoder MC, Mead LE, Prater D et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  CAS  PubMed  Google Scholar 

  30. Prater DN, Case J, Ingram DA, Yoder MC (2007) Working hypothesis to redefine endothelial progenitor cells. Leukemia 21:1141–1149

    Article  CAS  PubMed  Google Scholar 

  31. Yoder MC (2009) Defining human endothelial progenitor cells. J Thromb Haemost 7(Suppl 1):49–52

    Article  CAS  PubMed  Google Scholar 

  32. Critser PJ, Yoder MC (n d) Endothelial colony-forming cell role in neoangiogenesis and tissue repair. Curr Opin Organ Transplant 15:68–72

  33. Hur J, Yoon CH, Kim HS et al (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293

    Article  CAS  PubMed  Google Scholar 

  34. Sieveking DP, Buckle A, Celermajer DS, Ng MK (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51:660–668

    Article  CAS  PubMed  Google Scholar 

  35. Timmermans F, Plum J, Yoder MC et al (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102

    Article  PubMed  Google Scholar 

  36. Case J, Mead LE, Bessler WK et al (2007) Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35:1109–1118

    Article  CAS  PubMed  Google Scholar 

  37. Elsheikh E, Uzunel M, He Z et al (2005) Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity. Blood 106:2347–2355

    Article  CAS  PubMed  Google Scholar 

  38. Massa M, Campanelli R, Bonetti E et al (2009) Rapid and large increase of the frequency of circulating endothelial colony-forming cells (ECFCs) generating late outgrowth endothelial cells in patients with acute myocardial infarction. Exp Hematol 37:8–9

    Article  CAS  PubMed  Google Scholar 

  39. Ingram DA, Mead LE, Tanaka H et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    Article  CAS  PubMed  Google Scholar 

  40. Yoon CH, Hur J, Park KW et al (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112:1618–1627

    Article  PubMed  Google Scholar 

  41. Roncalli JG, Tongers J, Renault MA, Losordo DW (2008) Endothelial progenitor cells in regenerative medicine and cancer: a decade of research. Trends Biotechnol 26:276–283

    Article  CAS  PubMed  Google Scholar 

  42. Bertolini F, Mancuso P, Braidotti P et al (2009) The multiple personality disorder phenotype(s) of circulating endothelial cells in cancer. Biochim Biophys Acta 1796:27–32

    CAS  PubMed  Google Scholar 

  43. Tilki D, Hohn HP, Ergun B et al (2009) Emerging biology of vascular wall progenitor cells in health and disease. Trends Mol Med 15:501–509

    Article  CAS  PubMed  Google Scholar 

  44. Murasawa S, Asahara T (2008) Cardiogenic potential of endothelial progenitor cells. Ther Adv Cardiovasc Dis 2:341–348

    Article  PubMed  Google Scholar 

  45. Havemann K, Pujol BF, Adamkiewicz J (2003) In vitro transformation of monocytes and dendritic cells into endothelial like cells. Adv Exp Med Biol 522:47–57

    CAS  PubMed  Google Scholar 

  46. Asosingh K, Aldred MA, Vasanji A et al (2008) Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am J Pathol 172:615–627

    Article  CAS  PubMed  Google Scholar 

  47. Shepherd BR, Enis DR, Wang F et al (2006) Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J 20:1739–1741

    Article  CAS  PubMed  Google Scholar 

  48. Melero-Martin JM, De Obaldia ME, Kang SY et al (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103:194–202

    Article  CAS  PubMed  Google Scholar 

  49. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  50. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  51. Hirschi KK, Goodell MA (2002) Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells. Gene Ther 9:648–652

    Article  CAS  PubMed  Google Scholar 

  52. Song L, Tuan RS (2004) Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J 18:980–982

    CAS  PubMed  Google Scholar 

  53. Kashiwakura Y, Katoh Y, Tamayose K et al (2003) Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow. Circulation 107:2078–2081

    Article  PubMed  Google Scholar 

  54. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  55. Au P, Tam J, Fukumura D, Jain RK (2008) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111:4551–4558

    Article  CAS  PubMed  Google Scholar 

  56. Traktuev DO, Prater DN, Merfeld-Clauss S et al (2009) Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 104:1410–1420

    Article  CAS  PubMed  Google Scholar 

  57. Koizumi K, Tsutsumi Y, Kamada H et al (2003) Incorporation of adult organ-derived endothelial cells into tumor blood vessel. Biochem Biophys Res Commun 306:219–224

    Article  CAS  PubMed  Google Scholar 

  58. Tintut Y, Alfonso Z, Saini T et al (2003) Multilineage potential of cells from the artery wall. Circulation 108:2505–2510

    Article  PubMed  Google Scholar 

  59. Tavian M, Zheng B, Oberlin E et al (2005) The vascular wall as a source of stem cells. Ann N Y Acad Sci 1044:41–50

    Article  PubMed  Google Scholar 

  60. Zengin E, Chalajour F, Gehling UM et al (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133:1543–1551

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no financial or personal relations to other parties whose interests could have affected the content of this article in any way, either positively or negatively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Werner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, M., Nickenig, G. & Werner, N. Regeneration of the vascular compartment. Herz 35, 342–351 (2010). https://doi.org/10.1007/s00059-010-3360-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-010-3360-0

Keywords

Schlüsselwörter

Navigation