Skip to main content

Advertisement

Log in

Investigation of myorelaxant activity of 9-aryl-3,4,6,7-tetrahydroacridine-1,8-(2H,5H,9H,10H)-diones in isolated rabbit gastric fundus

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this study, twelve compounds having 9-aryl-3,4,6,7-tetrahydroacridine-1,8-(2H,5H,9H,10H)-dione structure were synthesized by reaction of 5-methyl-1,3-cyclohexanedione, the appropriate aromatic aldehydes, and ammonium acetate in methanol. The structures of the compounds were elucidated by infrared, 1H- and 13C-nuclear magnetic resonance spectroscopy (-NMR), mass spectroscopy, and elemental analysis. The maximum relaxant effects (E max) and pD2 values of the compounds 3al and pinacidil were tested on isolated strips of rabbit gastric fundus smooth muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  • Aronson JK (1992) Potassium channels in nervous tissue. Biochem Pharmacol 43(1):11–14

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft FM, Gribble FM (2000) New windows on the mechanism of action of K(ATP) channel openers. Trends Pharmacol Sci 21(11):439–445

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54(2):87–143

    Article  PubMed  CAS  Google Scholar 

  • Ashworth I, Hopes P, Levin D, Patel I, Salloo R (2002) An asymmetric synthesis of a 4-substituted-1,4-dihydropyridine. Tetrahedron Lett 43:4931–4933

    Article  CAS  Google Scholar 

  • Berkan O, Saraç B, Simsek R, Yıldırım S, Sarıoğlu Y, Safak C (2002) Vasorelaxing properties of some phenylacridine type potassium channel openers in isolated rabbit thoracic arteries. Eur J Med Chem 7:519–523

    Article  Google Scholar 

  • Blatz AL, Magleby KL (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323:718–720

    Article  PubMed  CAS  Google Scholar 

  • Bossert F, Vater W (1971) Pharmaceutical 1,4,5,6,7,8-hexahydro-5-oxoquinolines and 1,2,3,4,5,6,7,8,9,10-decahydro-1,8-dioxoacridines, Ger Offen 2,003,148 (Cl. C07 d), ref. C. A.: 75: 98459c

  • Carroll WA, Agrios KA, Altenbach RJ, Buckner SA, Chen Y, Coghlan MJ et al (2004a) Synthesis and structure-activity relationships of a novel series of tricyclic dihydropyridine-based KATP openers that potently inhibit bladder contractions in vitro. J Med Chem 47(12):3180–3192

    Article  PubMed  CAS  Google Scholar 

  • Carroll WA, Altenbach RJ, Bai H, Brioni JD, Brune ME, Buckner SA et al (2004b) Synthesis and structure-activity relationships of a novel series of 2,3,5,6,7,9-hexahydrothieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide K(ATP) channel openers: discovery of (-)-(9S)-9-(3-bromo-4-fluorophenyl)-2,3,5,6,7,9-hexahydrothieno [3,2-b]quinolin-8(4H)-one 1,1-dioxide (A-278637), a potent K(ATP) opener that selectively inhibits spontaneous bladder contractions. J Med Chem 47:3163–3179

    Article  PubMed  CAS  Google Scholar 

  • Cook NS (1988) The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sci 9(1):21–28

    Article  PubMed  CAS  Google Scholar 

  • Davis-Taber R, Molinari EJ, Altenbach RJ, Whiteaker KL, Shieh CC, Rotert G et al (2003) [125I]A-312110, a novel high-affinity 1, 4-dihydropyridine ATP-sensitive K+ channel opener: characterization and pharmacology of binding. Mol Pharm 64(1):143–153

    Article  CAS  Google Scholar 

  • Firth TA, Mawe GM, Nelson MT (2000) Pharmacology and modulation of K(ATP) channels by protein kinase C and phosphatases in gallbladder smooth muscle. Am J Physiol Cell Physiol 278:1031–1037

    Google Scholar 

  • Frank A, Forst JM, Grant T, Haris RJ, Kau ST, Li JH et al (1993) Dihydropyridine KATP potassium channel openers. Bio Med Chem Lett 3(12):2725–2726

    Article  CAS  Google Scholar 

  • Gopalakrishnan M, Miller TR, Buckner SA, Milicic I, Molinari EJ, Whiteaker KL (2003) Pharmacological characterization of a 1,4-dihydropyridine analogue, 9-(3,4-dichlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H)-acridinedione (A-184209) as a novel K(ATP) channel inhibitor. Br J Pharmacol 138(2):393–399

    Article  PubMed  CAS  Google Scholar 

  • Grissmer S (1997) Potassium channels still hot. Trends Pharmacol Sci 18:347–350

    PubMed  CAS  Google Scholar 

  • Grissmer S, Cahalan MD (1989) Divalent ion trapping inside potassium channels of human T lymphocytes. J Gen Physiol 93(4):609–630

    Article  PubMed  CAS  Google Scholar 

  • Gündüz MG, Doğan AE, Simsek R, Erol K, Safak C (2009) Substituted 9-aryl-1,8-acridinedione derivatives and their effects on potassium channels. Med Chem Res 18(4):317–325

    Article  Google Scholar 

  • Hadizadeh F, Mehri N (2006) Synthesis of 9-[1-benzyl-2-(alkylsulfonyl)-1H–5-imidazolyl]-octahydro-1, 8-acridinediones. Heterocycl Chem 43(1):213–215

    Article  CAS  Google Scholar 

  • Jaggar JH, Mawe GM, Nelson MT (1998) Voltage-dependent K+ currents in smooth Muscle cells from mouse gallbladder. Am J Physiol 274:687–693

    Google Scholar 

  • Klöckner U, Trieschmann U (1989) Pharmacological modulation of calcium and potassium channels in isolated vascular smooth muscle cells. Arzneim Forsch Drug Res 39:120–126

    Google Scholar 

  • Lawson K (2000) Potassium channel openers as potential therapeutic weapons in ion channel disease. Kidney Int 57:838–845

    Article  PubMed  CAS  Google Scholar 

  • Loussouarn G, Pike LJ, Ashcroft FM, Makhina EN (2001) Dynamic sensitivity of ATP-sensitive K(+) channels to ATP. Biol Chem 276(31):29098–29103

    Article  CAS  Google Scholar 

  • MacKinnon R, Yellen G (1990) Mutations affecting TEA blockade and ion permeation voltage-activated K+ channels. Science 250:276–279

    Article  PubMed  CAS  Google Scholar 

  • Mannhold R (2004) KATP channel openers: structure-activity relationships and therapeutic potential. Med Res Rev 24(2):213–266

    Article  PubMed  CAS  Google Scholar 

  • Mathie A, Wooltorton JR, Watkins CS (1998) Voltage-activated potassium channels in mammalian neurons and their block by novel pharmacological agents. Gen Pharmacol 30(1):13–24

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Okada S, Yamaguchi N, Shimizu T, Yokotani K (2004) Role of K+ channels in M2 muscarinic receptor-mediated inhibition of noradrenaline release from the rat stomach. J Pharmacol Sci 96(3):286–292

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Malenka RC, Kauer JA (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 70(2):513–565

    PubMed  CAS  Google Scholar 

  • Noma E (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148

    Article  PubMed  CAS  Google Scholar 

  • Ohnmacht J, Cyrus D, Trainor JM, Forst MM, Stein RJ, Haris J (1995) Heterocyclic derivatives. U.S. Patent 5,455,253

  • Özturk GS, Vural M, Gunduz MG, Simsek R, Sarıoğlu Y, Safak C (2008) Synthesis of 2- methyl-4-aryl-4,6,7,8-tetrahydro-5(1H)-quinolone derivatives and their effects on potassium channels. Arzneim Forsch Drug Res 58(1):659–665

    Google Scholar 

  • Reinhart PH, Chung S, Levitan IB (1989) A family of calcium-dependent potassium channels from rat brain. Neuron 2(1):1031–1041

    Article  PubMed  CAS  Google Scholar 

  • Robertson DW, Steinberg MI (1990) Potassium channel modulators: scientific applications and therapeutic promise. J Med Chem 33(6):1529–1541

    Article  PubMed  CAS  Google Scholar 

  • Roeper J, Pongs O (1996) Presynaptic potassium channels. Curr Opin Neurobiol 6(3):338–341

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Spector PS (1997) Potassium channelopathies. Neuropharmacology 36(6):755–762

    Article  PubMed  CAS  Google Scholar 

  • Saraç B, Aydın C, Simsek R, Yıldırım MK, Koyuncu A, Safak C (2002) Potassium Channel opening activities of some acridine derivatives. J Hac Univ Fac Pharm 22:49–55

    Google Scholar 

  • Sim JH, Yang DK, Kim YC, Park SJ, Kang TM, So I et al (2002) ATP-sensitive K(+) channels composed of Kir6.1 and SUR2B subunits in guinea pig gastric myocytes. Am J Physiol Gastrointest Liver Physiol 282(1):137–142

    Google Scholar 

  • Simsek R, Özkan M, Kısmetli E, Uma S, Safak C (2004) Some arylacridine derivatives possessing potassium channel opening activity. Il Farmaco 59:939–943

    Article  PubMed  CAS  Google Scholar 

  • Simsek R, Öztürk GS, Vural IM, Gündüz MG, Sarıoglu Y, Safak C (2008) Synthesis and calcium modulatory activity of 3-alkyloxy-carbonyl-4-(disubstituted)aryl-5-oxo-1,4,5,6,7,8-hexa-hydroquinoline derivatives. Arch Pharm Chem Life Sci 341:55–60

    Article  CAS  Google Scholar 

  • Tagaya E, Tamaoki J, Takemura H, Nagai A (1998) Regulation of adrenergic nerve- mediated contraction of canine pulmonary artery by K+ channels. Eur Respir J 11(3):571–574

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahime Şimşek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fincan, G.S.Ö., Gündüz, M.G., Vural, İ.M. et al. Investigation of myorelaxant activity of 9-aryl-3,4,6,7-tetrahydroacridine-1,8-(2H,5H,9H,10H)-diones in isolated rabbit gastric fundus. Med Chem Res 21, 1817–1824 (2012). https://doi.org/10.1007/s00044-011-9698-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9698-x

Keywords

Navigation