Skip to main content
Log in

A ligand-based approach for enhancing the pharmacokinetic profile of highly charged antibacterial agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Glutamate racemase catalyses the interconversion of l-glutamate and d-glutamate making available d-glutamate which is essential for peptidoglycan biosynthesis. Inhibitors of this enzyme have exhibited antibacterial activity with the d-glutamate-analogues group of inhibitors being the most significant as it is the only group that has demonstrated efficacy in a murine thigh Streptococcus pneumoniae infection model. This group of inhibitors, however, showed a narrow antibacterial spectrum that could be due to poor lipophilicity and permeability properties. Here, we have adopted a computational ligand-based drug design approach to enhance the lipophilicity and, hence, the antibacterial spectrum of this group of inhibitors. By limiting the charged groups on our pharmacophore model and identifying key interactions for glutamate racemase binding and inhibition, we have successfully searched a compound database for compounds with both antibacterial activity and increased lipophilicity. However, our compounds appear less potent, likely due to decreased specificity. We also demonstrate that permeability and lipophilicity alone are not responsible for the narrow antibacterial spectrum observed in the d-glutamate analogue inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175:880–885

    Article  PubMed  CAS  Google Scholar 

  • Basarab GS, Hill PJ, Rastagar A, Webborn PJH (2008) Design of Helicobacter pylori glutamate racemase inhibitors as selective antibacterial agents: a novel pro-drug approach to increase exposure. Bioorg Med Chem Lett 18:4716–4722

    Article  PubMed  CAS  Google Scholar 

  • Breault GA, Comita-Prevoir J, Eyermann CJ, Geng B, Petrichko R, Doig P, Gorseth E, Noonan B (2008) Exploring 8-benzyl pteridine-6,7-diones as inhibitors of glutamate racemase (MurI) in gram-positive bacteria. Bioorg Med Chem Lett 18:6100–6103

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti AC (1994) Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation. Amino Acids 6:213−229

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti AC, Deamer DW (1992) Permeability of lipid bilayers to amino acids and phosphate. Biochim Biophys Acta 1111:171–177

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti AC, Clark-Lewis I, Harrigan PR, Cullis PR (1992) Uptake of basic amino acids and peptides into liposomes in response to transmembrane pH gradients. Biophys J 61:228–234

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi PR, Decker CJ, Odinecs A (2001) Prediction of pharmacokinetic properties using experimental approaches during early drug discovery. Curr Opin Chem Biol 5:452–463

    Article  PubMed  CAS  Google Scholar 

  • De Dios A, Prieto L, Martin JA, Rubio A, Ezquerra J, Tebbe M, Lopez de Ural de B, Martin J, Sanchez A, LeTourneau DL, McGee JE, Boylan C, Parr TR, Smith MC (2002) 4-Substituted d-glutamic acid analogues: the first potent inhibitors of glutamate racemase (MurI) enzyme with antibacterial activity. J Med Chem 45:4559–4570

    Article  PubMed  Google Scholar 

  • Doublet P, van Heijenoort J, Mengin-Lecreulx D (1992) Identification of the Escherichia coli murI gene, which is required for the biosynthesis of d-glutamic acid, a specific component of bacterial peptidoglycan. J Bacteriol 174:5772–5779

    PubMed  CAS  Google Scholar 

  • Fisher SL (2008) Glutamate racemase as a target for drug discovery. Microb Biotechnol 1:345–360

    Article  PubMed  CAS  Google Scholar 

  • Gallo KA, Knowles JR (1993) Purification, cloning, and cofactor independence of glutamate racemase from lactobacillus. Biochemistry 32:3981–3990

    Article  PubMed  CAS  Google Scholar 

  • Ge M, Chen Z, Onishi HR, Kohler J, Silver LL, Kerns R, Fukuzawa S, Thompson C, Kahne D (1999) Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding d-ala-d-ala. Science 284:507–511

    Article  PubMed  CAS  Google Scholar 

  • Geng B, Breault G, Comita-Prevoir J, Petrichko R, Eyermann C, Lundqvist T, Doig P, Gorseth E, Noonan B (2008) Exploring 9-benzyl purines as inhibitors of glutamate racemase (MurI) in gram-positive bacteria. Bioorg Med Chem Lett 18:4368–4372

    Article  PubMed  CAS  Google Scholar 

  • Geng B, Basarab G, Comita-Prevoir J, Gowravaram M, Hill P, Kiely A, Loch J, MacPherson L, Morningstar M, Mullen G, Osimboni E, Satz A, Eyermann C, Lundqvist T (2009) Potent and selective inhibitors of Helicobacter pylori glutamate racemase (MurI): pyridodiazepine amines. Bioorg Med Chem Lett 19:930–936

    Article  PubMed  CAS  Google Scholar 

  • Glavas S, Tanner ME (1999) Catalytic acid/base residues of glutamate racemase. Biochemistry 38:4106–4113

    Article  PubMed  CAS  Google Scholar 

  • Gutknecht J, Walter A (1981) Histamine, theophylline and tryptamine transport through lipid bilayer membranes. Biochim Biophys Acta 649:149–154

    Article  PubMed  CAS  Google Scholar 

  • Kerns EH, Di L (2008a) Permeability. In: Drug-like properties: concepts, structure design and methods: from ADME to toxicity optimization. Academic Press, Amsterdam, Boston, pp 86–98

  • Kerns EH, Di L (2008b) Lipophilicity. In: Drug-like properties: concepts, structure design and methods: from ADME to toxicity optimization. Academic Press, Amsterdam, Boston, pp 43–47

  • Kim WC, Rhee HI, Park BK, Suk KH, Cha SH (2000) Isolation of peptide ligands that inhibit glutamate racemase activity from a random phage display library. J Biomol Screen 5:435–540

    Article  PubMed  CAS  Google Scholar 

  • MAESTRO, version 8.5. Schrodinger, LLC, New York, NY, 2008

  • Miller EL (2002) The penicillins: a review and update. J Midwifery Women Health 47:426–434

    Article  Google Scholar 

  • PHASE, version 2.0. Schrodinger, LLC, New York, NY, 2005

  • QIKPROP, version 3.1 and user manual. Schrodinger, LLC, New York, NY, 2008

  • Seymour RA, Hogg SD (2008) Antibiotics and chemoprophylaxis. Periodontol 2000 46:80–108

    Article  PubMed  Google Scholar 

  • Stenberg P, Luthman K, Artursson P (2000) Virtual screening of intestinal drug permeability. J Control Release 65:231–243

    Article  PubMed  CAS  Google Scholar 

  • Tanner ME, Glavas S (1997) The inhibition of glutamate racemase by d-N-hydroxyglutamate. Bioorg Med Chem Lett 7:2265–2270

    Article  Google Scholar 

  • Tanner ME, Miao S (1994) The synthesis and stability of aziridino-glutamate, an irreversible inhibitor of glutamate racemase. Tetrahedron Lett 35:4073–4076

    Article  CAS  Google Scholar 

  • Vollmer W (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167

    Article  PubMed  CAS  Google Scholar 

  • Vollmer W, Bertsche U (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1778:1714–1734

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT (1989) Enzymes in the d-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem 264:2393–2396

    PubMed  CAS  Google Scholar 

  • Young KD (2003) Bacterial shape. Mol Microbiol 49:571–580

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Linda Young, Professor of Biological Sciences, Department of Biology, Ohio Northern University, for the valuable input and discussion and for providing the S. aureus and E. coli strains used in this study. This work was supported by a Bower, Bennet, and Bennet grant from Ohio Northern University, Raabe College of Pharmacy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Mahfouz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skidmore, K.W., Scherer, C., Stockert, A. et al. A ligand-based approach for enhancing the pharmacokinetic profile of highly charged antibacterial agents. Med Chem Res 21, 362–372 (2012). https://doi.org/10.1007/s00044-010-9538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-010-9538-4

Keywords

Navigation