Skip to main content
Log in

Vinberg’s θ-groups in positive characteristic and Kostant–Weierstrass slices

Transformation Groups Aims and scope Submit manuscript

Abstract

We generalize the basic results of Vinberg’s θ-groups, or periodically graded reductive Lie algebras, to fields of good positive characteristic. To this end we clarify the relationship between the little Weyl group and the (standard) Weyl group. We deduce that the ring of invariants associated to the grading is a polynomial ring. This approach allows us to prove the existence of a KW-section for a classical graded Lie algebra (in zero or odd positive characteristic), confirming a conjecture of Popov in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. D. J. Benson, Polynomial Invariants of Finite Groups, London Mathematical Society Lecture Notes, Vol. 190, Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  2. A. Borel, Linear Algebraic Groups, Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  3. R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1–59.

    MATH  MathSciNet  Google Scholar 

  4. C. Chevalley, Classification des Groupes Algébriques Semi-Simples, Springer, Berlin, 2005. Collected Works, Vol. 3, edited and with a preface by P. Cartier, with the collaboration of Cartier, A. Grothendieck, and M. Lezard.

  5. I. Gordon, A. Premet, Block representation type of reduced enveloping algebras, Trans. Amer. Math. Soc. 354(4) (2002), 1549–1581.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. J. Haboush, Reductive groups are geometrically reductive, Ann. of Math. (2) 102(1) (1975), 67–83.

    Article  MathSciNet  Google Scholar 

  7. A. J. Helminck, Algebraic groups with a commuting pair of involutions and semisimple symmetric spaces, Adv. Math. 71(1) (1988), 21–91.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York, 1975.

    MATH  Google Scholar 

  9. N. Kawanaka, Orbits and stabilizers of nilpotent elements of a graded semisimple Lie algebra, J. Fac. Sci. Univ. Tokyo Section IA Math. 34(3) (1987), 573–597.

    MATH  MathSciNet  Google Scholar 

  10. G. R.Kempf, Instability in invariant theory, Ann. of Math. (2) 108(2) (1978), 299–316.

    Article  MathSciNet  Google Scholar 

  11. B. Kostant, S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Levy, Commuting varieties of Lie algebras over fields of prime characteristic, J. Algebra 250(2) (2002), 473–484.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Levy, Involutions of reductive Lie algebras in positive characteristic, Adv. Math. 210(2) (2007), 505–559.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Martin, A. Neeman, The map VV//G need not be separable, Math. Res. Lett. 8(5–6) (2001), 813–817.

    MATH  MathSciNet  Google Scholar 

  15. G. J. McNinch, E. Sommers, Component groups of unipotent centralizers in good characteristic, J. Algebra 260(1) (2003), 323–337. Special issue celebrating the 80th birthday of Robert Steinberg.

    Article  MATH  MathSciNet  Google Scholar 

  16. Д. И. Панюшев, О пространстве орбит конечных и связных линейных групп, Изв. Акад. Наук СССР, сер. мат. 46(1) (1982), 95–99, 191. Engl. transl.: D. I. Panyushev, On orbit spaces of finite and connected linear groups, Math. USSR-Izv. 20 (1983), 97–101.

  17. Д. И. Панюшев, Регулярные злементы в пространствах линейных представлений, II., Изв. Акад. Наук СССР, сер. мат. 49(5) (1985), 979–985, 1120. Engl. transl.: D. I. Panyushev, Regular elements in spaces of linear representations, II, Math. USSR.-Izv. 27 279–284, 1986.

  18. D. I. Panyushev, On invariant theory of θ-groups, J. Algebra 283(2) (2005), 655–670.

    Article  MATH  MathSciNet  Google Scholar 

  19. В. Л. Попов, Представления со свободным модулем ковариантов, Функц. анализ и его прил. 10(3) (1976), 91–92. Engl. transl.: V. L. Popov, Representations with a free module of covariants, Functional Anal. Appl. 10 (1976), no. 3, 242–244.

  20. V. L. Popov, Sections in invariant theory, in: The Sophus Lie Memorial Conference (Oslo, 1992), Scandinavian University Press, Oslo, 1994, pp. 315–361.

    Google Scholar 

  21. Э. Б. Винберг, В. Л. Попов, Теория инвариантов, Итоги науки и техн., Совр. пробл. матем., Фунд. направл., ВИНИТИ, Москва, т. 55, 1989, стр. 137–309. Engl. transl.: V. L. Popov, E. B. Vinberg, Invariant Theory, in: Algebraic Geometry IV, Encycl. Math. Sci., Vol. 55, Springer-Verlag, Heidelberg, 1994, pp. 123–284.

  22. A. Premet, Complexity of Lie algebra representations and nilpotent elements of the stabilizers of linear forms, Math. Z. 228(2) (1998), 255–282.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Premet, Nilpotent orbits in good characteristic and the Kempf–Rousseau theory, J. Algebra 260(1) (2003), 338–366. Special issue celebrating the 80th birthday of Robert Steinberg.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Premet, R. Tange, Zassenhaus varieties of general linear Lie algebras, J. Algebra 294(1) (2005), 177–195.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. W. Richardson, Orbits, invariants, and representations associated to involutions of reductive groups, Invent. Math. 66(2) (1982), 287–312.

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Rousseau, Immeubles sphériques et théorie des invariants, C. R. Acad. Sci. Paris. Sér. A–B 286(5) (1978), A247–A250.

    MATH  MathSciNet  Google Scholar 

  27. P. Slodowy, Die Theorie der optimalen Einparameteruntergruppen für instabile Vektoren, in: Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., Vol. 13, Birkhäuser, Basel, 1989, pp. 115–131.

    Google Scholar 

  28. E. Sommers, A generalization of the Bala–Carter theorem for nilpotent orbits, Int. Math. Res. Not. (11) (1998), 539–562.

    Article  MathSciNet  Google Scholar 

  29. T. A. Springer, The classification of involutions of simple algebraic groups, J. Fac. Sci. Univ. Tokyo Section IA Math. 34(3) (1987), 655–670. 1987.

    MATH  MathSciNet  Google Scholar 

  30. T. A. Springer, R. Steinberg, Conjugacy classes, in: Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, NJ, 1968/69), Lecture Notes in Mathematics, Vol. 131, Springer-Verlag, Berlin, 1970, pp. 167–266.

    Google Scholar 

  31. R. Steinberg, Endomorphisms of Linear algebraic groups, Mem. Amer. Math. Soc. 80, 1968.

  32. F. D. Veldkamp, The center of the universal enveloping algebra of a Lie algebra in characteristic p, Ann. Sci. École Norm. Sup. (4) 5 (1972), 217–240.

    MATH  MathSciNet  Google Scholar 

  33. Э. Б. Винберг, Группа Вейля градуированной алгебры Ли, Изв. Акад. Наук СССР, сер. мат. 40(3) (1976), 488–526, 709. Engl. transl.: È. B. Vinberg, The Weyl group of a graded Lie algebra, Math. USSR-Izv. 10 (1977), 463–495.

  34. T. Vust, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. Math. France 102 (1974), 317–333.

    MATH  MathSciNet  Google Scholar 

  35. D. J. Winter, Fixed points and stable subgroups of algebraic group automorphisms, Proc. Amer. Math. Soc. 18 (1967), 1107–1113.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, P. Vinberg’s θ-groups in positive characteristic and Kostant–Weierstrass slices. Transformation Groups 14, 417–461 (2009). https://doi.org/10.1007/s00031-009-9056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-009-9056-y

Keywords

Navigation