Skip to main content
Log in

Optimal Lehmer Mean Bounds for the Toader Mean

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We find the greatest value p and least value q such that the double inequality L p (a, b) < T(a, b) < L q (a, b) holds for all a, b > 0 with a ≠ b, and give a new upper bound for the complete elliptic integral of the second kind. Here \({T(a,b)=\frac{2}{\pi}\int\nolimits_{0}^{{\pi}/{2}}\sqrt{a^2{\cos^2{\theta}}+b^2{\sin^2{\theta}}}d\theta}\) and L p (a, b) = (a p+1 + b p+1)/(a p + b p) denote the Toader and p-th Lehmer means of two positive numbers a and b, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzer H.: Bestmögliche Abschätzungen für spezielle Mittelwerte. Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 23(1), 331–346 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Alzer, H.: Über Lehmers Mittelwertfamilie. Elem. Math. 43(2), 50–54 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Alzer H., Qiu S.L.: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289–312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson G.D., Vamanamurthy M.K., Vuorinen M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. John Wiley & Sons, New York (1997)

    MATH  Google Scholar 

  5. Costin I., Toader Gh.: Generalized inverses of Lehmer means. Automat. Comput. Appl. Math. 14(1), 111–117 (2005)

    MathSciNet  Google Scholar 

  6. Liu Zh.: Remark on inequalities between Hölder and Lehmer means. J. Math. Anal. Appl. 247(1), 309–313 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Qiu, S.L., Shen, J.M.: On two problems concerning means. J. Hangzhou Inst. Electron. Eng. 17(3), 1–7 (1997) (in Chinese)

    Google Scholar 

  8. Stolarsky K.B.: Hölder means, Lehmer means and x −1 log coshx. J. Math. Anal. Appl. 202(3), 810–818 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Toader Gh.: Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218(2), 358–368 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Toader S., Toader Gh.: Complementaries of Greek means with respect to Lehmer means. Automat. Comput. Appl. Math. 15(2), 315–320 (2006)

    MathSciNet  Google Scholar 

  11. Vuorinen M.: Hypergeometric functions in geometric function theory, Special functions and differential equations (Madras, 1997), pp. 119–126. Allied Publishers, New Delhi (1998)

    Google Scholar 

  12. Wassell S.R.: Rediscovering a family of means. Math. Intell. 24(2), 58–65 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Chu.

Additional information

This work is supported by the National Natural Science Foundation of China (11071069), the Natural Science Foundation of Zhejiang Province (Y7080106) and the Innovation Team Foundation of the Department of Education of Zhejiang Province (T200924).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, YM., Wang, MK. Optimal Lehmer Mean Bounds for the Toader Mean. Results. Math. 61, 223–229 (2012). https://doi.org/10.1007/s00025-010-0090-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-010-0090-9

Mathematics Subject Classification (2010)

Keywords

Navigation