Skip to main content
Log in

Concerning the W k,p-Inviscid Limit for 3-D Flows Under a Slip Boundary Condition

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the 3-D evolutionary Navier–Stokes equations with a Navier slip-type boundary condition, see (1.2), and study the problem of the strong convergence of the solutions, as the viscosity goes to zero, to the solution of the Euler equations under the zero-flux boundary condition. We prove here, in the flat boundary case, convergence in Sobolev spaces W kp(Ω), for arbitrarily large k and p (for previous results see Xiao and Xin in Comm Pure Appl Math 60:1027–1055, 2007 and Beirão da Veiga and Crispo in J Math Fluid Mech, 2009, doi:10.1007/s00021-009-0295-4). However this problem is still open for non-flat, arbitrarily smooth, boundaries. The main obstacle consists in some boundary integrals, which vanish on flat portions of the boundary. However, if we drop the convective terms (Stokes problem), the inviscid, strong limit result holds, as shown below. The cause of this different behavior is quite subtle. As a by-product, we set up a very elementary approach to the regularity theory, in L p-spaces, for solutions to the Navier–Stokes equations under slip type boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bae H.-O., Jin B.J.: Regularity for the Navier–Stokes equations with slip boundary condition. Proc. Am. Math. Soc. 136, 2439–2443 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bardos C.: Existence et unicité de la solution de l’équation de Euler en dimension deux. J. Math. Anal. Appl. 40, 769–790 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beavers G.S., Joseph D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  ADS  Google Scholar 

  4. Beirão da Veiga H.: Existence and asymptotic behaviour for strong solutions of the Navier–Stokes equations in the whole space. Indiana University Math. J. 36, 149–166 (1987)

    Article  MATH  Google Scholar 

  5. Beirao da Veiga H.: Regularity of solutions to a non homogeneous boundary value problem for general Stokes systems in \({\mathbb{R}^n_+}\). Math. Annalen 331, 203–217 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beirao da Veiga H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip type boundary conditions. Adv. Differ. Equ. 9(9–10), 1079–1114 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Beirão da Veiga H.: Remarks on the Navier–Stokes equations under slip type boundary conditions with linear friction. Portugaliae Math. 64, 377–387 (2007)

    Article  MATH  Google Scholar 

  8. Beirão da Veiga, H.: On the sharp vanishing viscosity limit of viscous incompressible fluid flows, to appear in a volume to the memory of A. Kazhikhov in the Birkhaueser book series “Advances in Mathematical Fluid Mechanics”

  9. Beirão da Veiga, H., Crispo, F.: Sharp inviscid limit results under Navier type boundary conditions. An L p theory. J. Math. Fluid Mech. (2009). doi:10.1007/s00021-009-0295-4

  10. Bendali A., Dominguez J.M., Galic S.: A variational approach for the vector potential formulation of the Stokes and Navier–Stokes problems in three dimensional domains. J. Math. Anal. Appl. 107, 537–560 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berselli L.C., Romito M.: On the existence and uniqueness of weak solutions for a vorticity seeding model. SIAM J. Math. Anal. 37, 1780–1799 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bresch D., Guillén-González F., Masmoudi N., Rodríguez-Bellido M.A.: Asymptotic derivation of a Navier condition for the primitive equations. Asymptot. Anal. 33, 237–259 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Cioranescu D., Donato P., Ene H.I.: Homogenization of the Stokes problem with non-homogeneous slip boundary conditions. Math. Methods Appl. Sci. 19, 857–881 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Clopeau T., Mikelic A., Robert R.: On the vanishing viscosity limit for the 2-D incompressible Navier–Stokes equations with the friction type boundary conditions. Nonlinearity 11, 1625–1636 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Constantin P., Foias C.: Navier–Stokes Equations. The University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  16. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations:Linearized Steady Problems. Springer Tracts in Natural Philosophy, vol. 38, Second corrected printing. Springer, Berlin (1998)

  17. Galdi G.P., Layton W.: Approximation of the larger eddies in fluid motion: a model for space filtered flow. Math. Models Meth. Appl. Sci. 3, 343–350 (2000)

    MathSciNet  Google Scholar 

  18. Girault, V.: Curl-conforming finite element methods for Navier–Stokes equations with non-standard boundary conditions in \({\mathbb{R}^3}\). Lecture Notes in Mathematics, vol. 1431. Springer, Berlin (1988)

  19. Grubb G.: Nonhomogeneous time-dependent Navier–Stokes problems in L p Sobolev spaces. Differ. Int. Equ. 8, 1013–1046 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Grubb G., Solonnikov V.A.: boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69, 217–290 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Iftimie D., Planas G.: Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions. Nonlinearity 19, 899–918 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Iftimie D., Raugel G., Sell G.R.: Navier–Stokes equations in thin 3D domains with Navier boundary conditions. Indiana Univ. Math. J. 56, 1083–1156 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jäger W., Mikelić A.: Couette flows over a rough boundary and drag reduction. Comm. Math. Phys. 232, 429–455 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  24. Judovich V.I.: Non-stationary flow of an ideal incompressible liquid. Zh. Vychisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)

    Google Scholar 

  25. Kato T.: Nonstationary flows of viscous and ideal fluids in \({\mathbb{R}^3}\). J. Funct. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  26. Kato, T.: Quasi-linear equations of evolution with applications to partial differential equations. In: Spectral Theory and Differential Equations. Lecture Notes in Mathematics, vol. 448. Springer, Berlin (1975)

  27. Kato T., Ponce G.: Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li Y., Li K.: Penalty finite element method for Stokes problem with nonlinear slip boundary conditions. Appl. Math. Comput. 204, 216–226 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lions J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites NonLinéaires. Dunod, Paris (1969)

    Google Scholar 

  30. Lions P.-L., Masmoudi N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lopes Filho M.C., Nussenzveig Lopes H.J., Planas G.: On the inviscid limit for two-dimensional incompressible flow with Navier friction condition. SIAM J. Math. Anal. 36, 1130–1141 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Masmoudi N.: Remarks about the inviscid limit of the Navier–Stokes system. Commun. Math. Phys. 270, 777–788 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Masmoudi N., Saint-Raymond L.: From the Boltzmann equation to the Stokes–Fourier system in a bounded domain. Comm. Pure Appl. Math. 56, 1263–1293 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Navier, C.L.M.: Mémoire sur les lois du mouvement des fluides. Mémoires de l’Académie Royale des Sciences de l’Institut de France, vol. 1 (1816)

  35. Rionero S., Galdi G.P.: The weight function approach to uniqueness of viscous flows in unbounded domains. Arch. Rat. Mech. Anal. 69, 37–52 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  36. Secchi P.: Flussi non stazionari di fluidi incompressibili viscosi e ideali in un semipiano. Ricerche di Matematica 34, 27–44 (1984)

    MathSciNet  Google Scholar 

  37. Solonnikov V.A., Ščadilov V.E.: On a boundary value problem for a stationary system of Navier–Stokes equations. Proc. Steklov Inst. Math. 125, 186–199 (1973)

    MATH  Google Scholar 

  38. Swann H.S.G.: The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in \({\mathbb{R}^3}\). Trans. Am. Math. Soc. 157, 373–397 (1971)

    MATH  MathSciNet  Google Scholar 

  39. Temam R.: On the Euler equations of incompressible perfect fluids. J. Funct. Anal. 20, 32–43 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  40. Temam R.: Navier–Stokes Equations. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  41. Watanabe J.: On incompressible viscous fluid flows with slip boundary conditions. J. Comp. Appl. Math. 159, 161–172 (2003)

    Article  MATH  ADS  Google Scholar 

  42. Xiao Y., Xin Z.: On the vanishing viscosity limit for the 3-D Navier–Stokes equations with a slip boundary condition. Comm. Pure Appl. Math. 60, 1027–1055 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Beirão da Veiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beirão da Veiga, H., Crispo, F. Concerning the W k,p-Inviscid Limit for 3-D Flows Under a Slip Boundary Condition. J. Math. Fluid Mech. 13, 117–135 (2011). https://doi.org/10.1007/s00021-009-0012-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-009-0012-3

Mathematics Subject Classification (2000)

Keywords

Navigation