Skip to main content
Log in

Soluble polysialylated NCAM: a novel player of the innate immune system in the lung

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Posttranslational modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) is well studied in the nervous system and described as a dynamic modulator of plastic processes like precursor cell migration, axon fasciculation, and synaptic plasticity. Here, we describe a novel function of polysialylated NCAM (polySia-NCAM) in innate immunity of the lung. In mature lung tissue of healthy donors, polySia was exclusively attached to the transmembrane isoform NCAM-140 and located to intracellular compartments of epithelial cells. In patients with chronic obstructive pulmonary disease, however, increased polySia levels and processing of the NCAM carrier were observed. Processing of polysialylated NCAM was reproduced in a mouse model by bleomycin administration leading to an activation of the inflammasome and secretion of interleukin (IL)-1β. As shown in a cell culture model, polySia-NCAM-140 was kept in the late trans-Golgi apparatus of lung epithelial cells and stimulation by IL-1β or lipopolysaccharide induced metalloprotease-mediated ectodomain shedding, resulting in the secretion of soluble polySia-NCAM. Interestingly, polySia chains of secreted NCAM neutralized the cytotoxic activity of extracellular histones as well as DNA/histone-network-containing “neutrophil extracellular traps”, which are formed during invasion of microorganisms. Thus, shedding of polySia-NCAM by lung epithelial cells may provide a host-protective mechanism to reduce tissue damage during inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9(1):26–35

    Article  CAS  PubMed  Google Scholar 

  2. Hildebrandt H, Muhlenhoff M, Weinhold B, Gerardy-Schahn R (2007) Dissecting polysialic acid and NCAM functions in brain development. J Neurochem 103(Suppl 1):56–64

    Article  CAS  PubMed  Google Scholar 

  3. Lackie PM, Zuber C, Roth J (1990) Polysialic acid and N-CAM localisation in embryonic rat kidney: mesenchymal and epithelial elements show different patterns of expression. Development 110(3):933–947

    CAS  PubMed  Google Scholar 

  4. Lackie PM, Zuber C, Roth J (1991) Expression of polysialylated N-CAM during rat heart development. Differentiation 47(2):85–98

    Article  CAS  PubMed  Google Scholar 

  5. Lackie PM, Zuber C, Roth J (1994) Polysialic acid of the neural cell adhesion molecule (N-CAM) is widely expressed during organogenesis in mesodermal and endodermal derivatives. Differentiation 57(2):119–131

    Article  CAS  PubMed  Google Scholar 

  6. Galuska SP, Geyer R, Gerardy-Schahn R, Muhlenhoff M, Geyer H (2008) Enzyme-dependent variations in the polysialylation of the neural cell adhesion molecule (NCAM) in vivo. J Biol Chem 283(1):17–28

    Article  CAS  PubMed  Google Scholar 

  7. Galuska SP et al (2006) Polysialic acid profiles of mice expressing variant allelic combinations of the polysialyltransferases ST8SiaII and ST8SiaIV. J Biol Chem 281(42):31605–31615

    Article  CAS  PubMed  Google Scholar 

  8. Colley KJ (2010) Structural basis for the polysialylation of the neural cell adhesion molecule. Adv Exp Med Biol 663:111–126

    Google Scholar 

  9. Rutishauser U (1998) Polysialic acid at the cell surface: biophysics in service of cell interactions and tissue plasticity. J Cell Biochem 70(3):304–312

    Article  CAS  PubMed  Google Scholar 

  10. Yabe U, Sato C, Matsuda T, Kitajima K (2003) Polysialic acid in human milk. CD36 is a new member of mammalian polysialic acid-containing glycoprotein. J Biol Chem 278(16):13875–13880

    Article  CAS  PubMed  Google Scholar 

  11. Zuber C, Lackie PM, Catterall WA, Roth J (1992) Polysialic acid is associated with sodium channels and the neural cell adhesion molecule N-CAM in adult rat brain. J Biol Chem 267(14):9965–9971

    CAS  PubMed  Google Scholar 

  12. Galuska SP et al (2010) Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc Natl Acad Sci USA 107(22):10250–10255

    Article  CAS  PubMed  Google Scholar 

  13. Curreli S, Arany Z, Gerardy-Schahn R, Mann D, Stamatos NM (2007) Polysialylated neuropilin-2 is expressed on the surface of human dendritic cells and modulates dendritic cell-T lymphocyte interactions. J Biol Chem 282:30346–30356

    Article  CAS  PubMed  Google Scholar 

  14. Weinhold B et al (2005) Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem 280(52):42971–42977

    Article  CAS  PubMed  Google Scholar 

  15. Rey-Gallardo A, Delgado-Martin C, Gerardy-Schahn R, Rodriguez-Fernandez JL, Vega MA (2011) Polysialic acid is required for neuropilin-2a/b-mediated control of CCL21-driven chemotaxis of mature dendritic cells and for their migration in vivo. Glycobiology 21(5):655–662

    Article  CAS  PubMed  Google Scholar 

  16. Rey-Gallardo A et al (2010) Polysialylated neuropilin-2 enhances human dendritic cell migration through the basic C-terminal region of CCL21. Glycobiology 20(9):1139–1146

    Article  CAS  PubMed  Google Scholar 

  17. Drake PM et al (2008) Polysialic acid, a glycan with highly restricted expression, is found on human and murine leukocytes and modulates immune responses. J Immunol 181(10):6850–6858

    CAS  PubMed  Google Scholar 

  18. Drake PM et al (2009) Polysialic acid governs T-cell development by regulating progenitor access to the thymus. Proc Natl Acad Sci USA 106(29):11995–12000

    Article  CAS  PubMed  Google Scholar 

  19. Husmann M, Pietsch T, Fleischer B, Weisgerber C, Bitter-Suermann D (1989) Embryonic neural cell adhesion molecules on human natural killer cells. Eur J Immunol 19(9):1761–1763

    Article  CAS  PubMed  Google Scholar 

  20. Moebius JM, Widera D, Schmitz J, Kaltschmidt C, Piechaczek C (2007) Impact of polysialylated CD56 on natural killer cell cytotoxicity. BMC Immunol 8:13

    Article  PubMed  Google Scholar 

  21. Lantuejoul S et al (2000) NCAM (neural cell adhesion molecules) expression in malignant mesotheliomas. Hum Pathol 31(4):415–421

    Article  CAS  PubMed  Google Scholar 

  22. Hirn M, Pierres M, Deagostini-Bazin H, Hirsch M, Goridis C (1981) Monoclonal antibody against cell surface glycoprotein of neurons. Brain Res 214(2):433–439

    Article  CAS  PubMed  Google Scholar 

  23. Frosch M, Gorgen I, Boulnois GJ, Timmis KN, Bitter-Suermann D (1985) NZB mouse system for production of monoclonal antibodies to weak bacterial antigens: isolation of an IgG antibody to the polysaccharide capsules of Escherichia coli K1 and group B meningococci. Proc Natl Acad Sci USA 82(4):1194–1198

    Article  CAS  PubMed  Google Scholar 

  24. Stummeyer K, Dickmanns A, Muhlenhoff M, Gerardy-Schahn R, Ficner R (2005) Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F. Nat Struct Mol Biol 12(1):90–96

    Article  CAS  PubMed  Google Scholar 

  25. Eswar N et al (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinforma (chapter 5: unit 5.6)

  26. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10(12):980

    Article  CAS  PubMed  Google Scholar 

  27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  28. Bohne A, Lang E, von der Lieth CW (1999) SWEET—WWW-based rapid 3D construction of oligo- and polysaccharides. Bioinformatics 15(9):767–768

    Article  CAS  PubMed  Google Scholar 

  29. Bohne-Lang A, von der Lieth CW (2005) GlyProt: in silico glycosylation of proteins. Nucleic Acids Res 33(Web Server issue):W214–219

    Google Scholar 

  30. Lütteke T et al (2006) GLYCOSCIENCES.de: an Internet portal to support glycomics and glycobiology research. Glycobiology 16(5):71R–81R

    Google Scholar 

  31. Krieger E et al (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77(Suppl 9):114–122

    Article  CAS  PubMed  Google Scholar 

  32. Duan Y et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012

    Article  CAS  PubMed  Google Scholar 

  33. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11(11):601

    Article  CAS  PubMed  Google Scholar 

  34. Inoue S, Lin SL, Lee YC, Inoue Y (2001) An ultrasensitive chemical method for polysialic acid analysis. Glycobiology 11(9):759–767

    Article  CAS  PubMed  Google Scholar 

  35. Saffarzadeh M et al (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 7(2):e32366

    Article  CAS  PubMed  Google Scholar 

  36. Haselhorst T et al (2006) Endosialidase NF appears to bind polySia DP5 in a helical conformation. Chembiochem 7(12):1875–1877

    Article  CAS  PubMed  Google Scholar 

  37. Schwarzer D et al (2009) Proteolytic release of the intramolecular chaperone domain confers processivity to endosialidase F. J Biol Chem 284(14):9465–9474

    Article  CAS  PubMed  Google Scholar 

  38. Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5(3):195–208

    Article  CAS  PubMed  Google Scholar 

  39. Isomura R, Kitajima K, Sato C (2011) Structural and functional impairments of polysialic acid by a mutated polysialyltransferase found in schizophrenia. J Biol Chem 286(24):21535–21545

    Article  CAS  PubMed  Google Scholar 

  40. Chung KF (2001) Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl 34:50s–59s

    Article  CAS  PubMed  Google Scholar 

  41. van Eeden SF, Yeung A, Quinlam K, Hogg JC (2005) Systemic response to ambient particulate matter: relevance to chronic obstructive pulmonary disease. Proc Am Thorac Soc 2(1):61–67

    Article  PubMed  Google Scholar 

  42. Rusznak C et al (2000) Effect of cigarette smoke on the permeability and IL-1beta and sICAM-1 release from cultured human bronchial epithelial cells of never-smokers, smokers, and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 23(4):530–536

    Article  CAS  PubMed  Google Scholar 

  43. Doz E et al (2008) Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J Immunol 180(2):1169–1178

    CAS  PubMed  Google Scholar 

  44. Grande NR, Peao MND, Sa CMd, Aguas AP (1998) Lung fibrosis induced by bleomycin: structural changes and overview of recent advances. Scan Microsc 12(3):487–494

  45. Gasse P et al (2007) IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest 117(12):3786–3799

    CAS  PubMed  Google Scholar 

  46. Parker D, Prince A (2011) Innate immunity in the respiratory epithelium. Am J Respir Cell Mol Biol 45(2):189–201

    Article  CAS  PubMed  Google Scholar 

  47. Van Wetering S et al (1997) Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am J Physiol 272(5 Pt 1):L888–L896

    PubMed  Google Scholar 

  48. Phung TT et al (2011) Key role of regulated upon activation normal T-cell expressed and secreted, nonstructural protein1 and myeloperoxidase in cytokine storm induced by influenza virus PR-8 (A/H1N1) infection in A549 bronchial epithelial cells. Microbiol Immunol 55(12):874–884

    Article  CAS  PubMed  Google Scholar 

  49. Secher T (2010) Soluble NCAM. Adv Exp Med Biol 663:227–242

    Article  CAS  PubMed  Google Scholar 

  50. Bock E et al (1987) Characterization of soluble forms of NCAM. FEBS Lett 225(1–2):33–36

    Article  CAS  PubMed  Google Scholar 

  51. Bork K, Reutter W, Gerardy-Schahn R, Horstkorte R (2005) The intracellular concentration of sialic acid regulates the polysialylation of the neural cell adhesion molecule. FEBS Lett 579(22):5079–5083

    Article  CAS  PubMed  Google Scholar 

  52. Du J et al (2009) Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19(12):1382–1401

    Article  CAS  PubMed  Google Scholar 

  53. Saetta M et al (2000) Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med 161(3 Pt 1):1016–1021

    Article  CAS  PubMed  Google Scholar 

  54. Seok J et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110(9):3507–3512

    Article  CAS  PubMed  Google Scholar 

  55. Heijink IH et al (2011) Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD. Respir Res 12:110

    Article  CAS  PubMed  Google Scholar 

  56. Kalus I, Bormann U, Mzoughi M, Schachner M, Kleene R (2006) Proteolytic cleavage of the neural cell adhesion molecule by ADAM17/TACE is involved in neurite outgrowth. J Neurochem 98(1):78–88

    Article  CAS  PubMed  Google Scholar 

  57. Grommes J, Soehnlein O (2010) Contribution of neutrophils to acute lung injury. Mol Med 17(3–4):293–307

    PubMed  Google Scholar 

  58. Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    Article  CAS  PubMed  Google Scholar 

  59. Fuchs TA, Bhandari AA, Wagner DD (2011) Histones induce rapid and profound thrombocytopenia in mice. Blood 118(13):3708–3714

    Article  CAS  PubMed  Google Scholar 

  60. Xu J et al (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15(11):1318–1321

    Article  CAS  PubMed  Google Scholar 

  61. Crocker PR (2005) Siglecs in innate immunity. Curr Opin Pharmacol 5(4):431–437

    Article  CAS  PubMed  Google Scholar 

  62. Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7(4):255–266

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, Neumann H (2010) Alleviation of neurotoxicity by microglial human Siglec-11. J Neurosci 30(9):3482–3488

    Article  CAS  PubMed  Google Scholar 

  64. Villanueva E et al (2011) Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 187(1):538–552

    Article  CAS  PubMed  Google Scholar 

  65. Marcos V et al (2010) CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation. Nat Med 16(9):1018–1023

    Article  CAS  PubMed  Google Scholar 

  66. Hakkim A et al (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA 107(21):9813–9818

    Article  CAS  PubMed  Google Scholar 

  67. Fuchs TA, Brill A, Wagner DD (2012) Neutrophil extracellular trap impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 32(8):1777–1783

    Google Scholar 

  68. Caudrillier A et al (2012) Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 122(7):2661–2671

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christina Galuska and Kai Maass for many helpful discussions during preparation of the manuscript and proofreading as well as Werner Mink and Siegfried Kühnhardt for expert technical assistance. This work was supported by the Excellence Cluster Cardiopulmonary System (ECCPS) from the Deutsche Forschungsgemeinschaft (DFG) (Bonn, Germany), by the von Behring Röntgen Stiftung, by the BMBF-Clinical Research Group “Pneumonia” (Ministry for Education and Research, Berlin, Germany) as well as the LOEWE-program “Insect Biotechnology” (state of Hessen, Wiesbaden, Germany). RGS received financial support by the DFG in the framework of DFG Research Unit 548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian P. Galuska.

Additional information

M. Saffarzadeh, P. Mahavadi, and S. Müller contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 8018 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulm, C., Saffarzadeh, M., Mahavadi, P. et al. Soluble polysialylated NCAM: a novel player of the innate immune system in the lung. Cell. Mol. Life Sci. 70, 3695–3708 (2013). https://doi.org/10.1007/s00018-013-1342-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1342-0

Keywords

Navigation