Skip to main content

Advertisement

Log in

Connexin 43 a check-point component of cell proliferation implicated in a wide range of human testis diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Gap junction channels link cytoplasms of adjacent cells. Connexins, their constitutive proteins, are essential in cell homeostasis and are implicated in numerous physiological processes. Spermatogenesis is a sophisticated model of germ cell proliferation, differentiation, survival, and apoptosis, in which a connexin isotype, connexin 43, plays a crucial role as evidenced by genomic approaches based on gene deletion. The balance between cell proliferation/differentiation/apoptosis is a prerequisite for maintaining levels of spermatozoa essential for fertility and for limiting anarchic cell proliferation, a major risk of testis tumor. The present review highlights the emerging role of connexins in testis pathogenesis, focusing specifically on two intimately interconnected human testicular diseases (azoospermia with impaired spermatogenesis and testicular germ cell tumors), whose incidence increased during the last decades. This work proposes connexin 43 as a potential cancer diagnostic and prognostic marker, as well as a promising therapeutic target for testicular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFP:

Alpha-fetoprotein

AMH:

Anti-Müllerian hormone

BTB:

Blood–testis barrier

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

CIS:

Carcinoma in situ

Cx:

Connexin

G-CSF:

Granulocyte colony-stimulating factor

GJA1:

Gap junction protein alpha 1

GJIC:

Gap junction intercellular communication

hCG:

Human chorionic gonadotropin

KO:

Knock-out

LDH:

Lactate dehydrogenase

miRNA:

MicroRNA

ODDD:

Oculodentodigital

PGC:

Primordial germ cell

PLAP:

Placental alkaline phosphatase

SCO:

Sertoli-cell-only

References

  1. Sharpe RM (2006) Pathways of endocrine disruption during male sexual differentiation and masculinisation. Best Pract Res Clin Endocrinol Metab 20:91–110

    PubMed  CAS  Google Scholar 

  2. Skakkebæk NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16:972–978

    PubMed  Google Scholar 

  3. Hardell L, Bavel B, Lindström G, Eriksson M, Carlberg M (2006) In utero exposure to persistent organic pollutants in relation to testicular cancer risk. Int J Androl 29:228–234

    PubMed  CAS  Google Scholar 

  4. Pointis G, Segretain D (2005) Role of connexin-based gap junction channels in testis. Trends Endocrinol Metab 16:300–306

    PubMed  CAS  Google Scholar 

  5. Gilleron J, Malassiné A, Carette D, Segretain D, Pointis G (2011) Chemical connexin impairment in the developing gonad associated with offspring infertility. Curr Med Chem 18:5145–5158

    PubMed  CAS  Google Scholar 

  6. Pointis G, Gilleron J, Carette D, Segretain D (2011) Testicular connexin 43, a precocious molecular target for the effect of environmental toxicants on male fertility. Spermatogenesis 14:1–15

    Google Scholar 

  7. Leithe E, Sirnes S, Omori Y, Rivedal E (2006) Downregulation of gap junctions in cancer cells. Crit Rev Oncog 12:225–256

    PubMed  Google Scholar 

  8. Nieschlag E, Behre HM (2000) Andrology, male reproductive health and dysfunction. Springer, Berlin, pp 83–87

    Google Scholar 

  9. Rajender S, Avery K, Agarwal A (2011) Epigenetics, spermatogenesis and male infertility. Mutat Res 727:62–71

    PubMed  CAS  Google Scholar 

  10. Singh K, Jaiswal D (2011) Human male infertility: a complex multifactorial phenotype. Reprod Sci 18:418–425

    PubMed  Google Scholar 

  11. Juneja SC, Barr KJ, Enders GC, Kidder GM (1999) Defects in the germ line and gonads of mice lacking connexin43. Biol Reprod 60:1263–1270

    PubMed  CAS  Google Scholar 

  12. Plum A, Hallas G, Magin T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim J, Lamers WH, Evert M, Meda P, Traub O, Willecke K (2000) Unique and shared functions of different connexins in mice. Curr Biol 10:1083–1091

    PubMed  CAS  Google Scholar 

  13. Roscoe WA, Barr KJ, Mhawi AA, Pomerantz DK, Kidder GM (2001) Failure of spermatogenesis in mice lacking connexin43. Biol Reprod 65:829–838

    PubMed  CAS  Google Scholar 

  14. Brehm R, Zeiler M, Rüttinger C, Herde K, Kibschull M, Winterhager E, Willecke K, Guillou F, Lécureuil C, Steger K, Konrad L, Biermann K, Failing K, Bergmann MA (2007) Sertoli cell-specific knockout of connexin43 prevents initiation of spermatogenesis. Am J Pathol 171:19–31

    PubMed  CAS  Google Scholar 

  15. Sridarhan S, Simon L, Meling DD, Cyr DG, Gutstein DE, Fishman GI, Guillou F, Cooke PS (2007) Proliferation of adult Sertoli cells following conditional knockout of the Gap junctional protein GJA1 (connexin43) in mice. Biol Reprod 76:804–812

    Google Scholar 

  16. Winterhager E, Pielensticker N, Freyer J, Ghanem A, Schrickel JW, Kim JS, Behr R, Grümmer R, Maass K, Urschel S, Lewalter T, Tiemann K, Simoni M, Willecke K (2007) Replacement of connexin43 by connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular conduction in the heart. BMC Dev Biol 7:26

    PubMed  Google Scholar 

  17. Bruzzone R, White TW, Goodenough DA (1996) The cellular Internet: on-line with connexins. Bioessays 18:709–718

    PubMed  CAS  Google Scholar 

  18. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Güldenagel M, Deutsch U, Söhl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    PubMed  CAS  Google Scholar 

  19. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–1400

    PubMed  CAS  Google Scholar 

  20. Chipman JK, Mally A, Edwards GO (2003) Disruption of gap junctions in toxicity and carcinogenicity. Toxicol Sci 71:146–153

    PubMed  CAS  Google Scholar 

  21. Zoidl G, Dermietzel R (2010) Gap junctions in inherited human disease. Pflugers Arch 460:451–466

    PubMed  CAS  Google Scholar 

  22. Pfenniger A, Wohlwend A, Kwak BR (2011) Mutations in connexin genes and disease. Eur J Clin Invest 41:103–116

    PubMed  CAS  Google Scholar 

  23. Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M (2009) Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 11:323–338

    PubMed  CAS  Google Scholar 

  24. Trosko JE, Ruch RJ (2002) Gap junctions as targets for cancer chemoprevention and chemotherapy. Curr Drug Targets 3:465–482

    PubMed  CAS  Google Scholar 

  25. Pointis G, Fiorini C, Gilleron J, Carette D, Segretain D (2007) Connexins as precocious markers and molecular targets for chemical and pharmacological agents in carcinogenesis. Curr Med Chem 14:2288–2303

    PubMed  CAS  Google Scholar 

  26. Yamasaki H, Omori Y, Krutovskikh V, Zhu W, Mironov N, Yamakage K, Mesnil M (1999) Connexins in tumour suppression and cancer therapy. Novartis Found Symp 219:241–254

    PubMed  CAS  Google Scholar 

  27. Risley MS (2000) Connexin gene expression in seminiferous tubules of the Sprague–Dawley rat. Biol Reprod 62:748–754

    PubMed  CAS  Google Scholar 

  28. Pointis G, Fiorini C, Gilleron J, Carette D, Segretain D (2008) Connexins in the male reproductive system. In: Harris A, Locke D (eds) Connexins, a guide. Humana Press, Totowa, pp 495–510

    Google Scholar 

  29. Pointis G, Gilleron J, Carette D, Segretain D (2010) Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis. Phil Trans R Soc B 365:1607–1620

    PubMed  CAS  Google Scholar 

  30. Okada K, Katagiri T, Tsunoda T, Mizutani Y, Suzuki Y, Kamada M, Fujioka T, Shuin T, Miki T, Nakamura Y (2003) Analysis of gene-expression profiles in testicular seminomas using a genome-wide cDNA microarray. Int J Oncol 23:1615–1635

    PubMed  CAS  Google Scholar 

  31. Brehm R, Marks A, Rey R, Kliesch S, Bergmann M, Steger K (2002) Altered expression of connexins 26 and 43 in Sertoli cells in seminiferous tubules infiltrated with carcinoma-in-situ or seminoma. J Pathol 197:647–653

    PubMed  CAS  Google Scholar 

  32. White TW, Srinivas M, Ripps H, Trovato-Salinaro A, Condorelli DF, Bruzzone R (2002) Virtual cloning, functional expression, and gating analysis of human connexin31.9. Am J Physiol Cell Physiol 283:C960–C970

    PubMed  CAS  Google Scholar 

  33. Nielsen PA, Kumar NM (2003) Differences in expression patterns between mouse connexin-30.2 (Cx30.2) and its putative human orthologue, connexin-31.9. FEBS Lett 540:151–156

    PubMed  CAS  Google Scholar 

  34. Steger K, Tetens F, Bergmann M (1999) Expression of connexin 43 in human testis. Histochem Cell Biol 112:215–220

    PubMed  CAS  Google Scholar 

  35. Defamie N, Berthaut I, Mograbi B, Chevallier D, Dadoune JP, Fenichel P, Segretain D, Pointis G (2003) Impaired gap junction connexin43 in Sertoli cells of patients with secretory azoospermia: a marker of undifferentiated Sertoli cells. Lab Invest 83:449–456

    PubMed  CAS  Google Scholar 

  36. Matsuo Y, Nomata K, Eguchi J, Aoki D, Hayashi T, Hishikawa Y, Kanetake H, Shibata Y, Koji T (2007) Immunohistochemical analysis of connexin43 expression in infertile human testes. Acta Histochem Cytochem 40:69–75

    PubMed  CAS  Google Scholar 

  37. Kotula-Balak M, Hejmej A, Sadowska J, Bilinska B (2007) Connexin 43 expression in human and mouse testes with impaired spermatogenesis. Eur J Histochem 51:261–268

    PubMed  CAS  Google Scholar 

  38. Willecke K, Kirchhoff S, Plum A, Temme A, Thonnissen E, Ott T (1999) Biological functions of connexin genes revealed by human genetic defects, dominant negative approaches and targeted deletions in the mouse. Novartis Found Symp 219(76–88):88–96

    Google Scholar 

  39. Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834

    PubMed  CAS  Google Scholar 

  40. Weider K, Bergmann M, Giese S, Guillou F, Failing K, Brehm R (2011) Altered differentiation and clustering of Sertoli cells in transgenic mice showing a Sertoli cell specific knockout of the connexin 43 gene. Differentiation 82:38–49

    PubMed  CAS  Google Scholar 

  41. Francis RJ, Lo CW (2006) Primordial germ cell deficiency in the connexin 43 knockout mouse arises from apoptosis associated with abnormal p53 activation. Development 133:3451–3460

    PubMed  CAS  Google Scholar 

  42. Anniballo R, Brehm R, Steger K (2011) Recognising the Sertoli-cell-only (SCO) syndrome: a case study. Andrologia 43:78–83

    PubMed  CAS  Google Scholar 

  43. Gilleron J, Carette D, Durand P, Pointis G, Segretain D (2009) Connexin 43 a potential regulator of cell proliferation and apoptosis within the seminiferous epithelium. Int J Biochem Cell Biol 41:1381–1390

    PubMed  CAS  Google Scholar 

  44. Lee NP, Leung KW, Wo JY, Tam PC, Yeung WS, Luk JM (2006) Blockage of testicular connexins induced apoptosis in rat seminiferous epithelium. Apoptosis 11:1215–1229

    PubMed  CAS  Google Scholar 

  45. Godet M, Sabido O, Gilleron J, Durand P (2008) Meiotic progression of rat spermatocytes requires mitogen-activated protein kinases of Sertoli cells and close contacts between the germ cells and the Sertoli cells. Dev Biol 315:173–188

    PubMed  CAS  Google Scholar 

  46. Giese S, Hossain H, Markmann M, Chakraborty T, Tchatalbachev S, Guillou F, Bergmann M, Failing K, Weider K, Brehm R (2012) Sertoli-cell-specific knockout of connexin 43 leads to multiple alterations in testicular gene expression in prepubertal mice. Dis Model Mech. doi:10.1242/dmm.008649

  47. Li MW, Mruk DD, Lee WM, Cheng CY (2010) Connexin 43 is critical to maintain the homeostasis of the blood–testis barrier via its effects on tight junction reassembly. Proc Natl Acad Sci USA 107:17998–18003

    PubMed  CAS  Google Scholar 

  48. Carette D, Weider K, Gilleron J, Giese S, Dompierre J, Bergmann M, Brehm R, Denizot JP, Segretain D, Pointis G (2010) Major involvement of connexin 43 in seminiferous epithelial junction dynamics and male fertility. Dev Biol 346:54–67

    PubMed  CAS  Google Scholar 

  49. Bigliardi E, Vegni-Talluri M (1977) Gap junctions between Sertoli cells in the infertile human testis. Fertil Steril 28:755–758

    PubMed  CAS  Google Scholar 

  50. Schleiermacher E (1980) Ultrastructural changes of the intercellular relationship in impaired human spermatogenesis. Hum Genet 54:391–404

    PubMed  CAS  Google Scholar 

  51. Cavicchia JC, Sacerdote FL, Ortiz L (1996) The human blood–testis barrier in impaired spermatogenesis. Ultrastruct Pathol 20:211–218

    PubMed  CAS  Google Scholar 

  52. Hejmej A, Bilińska B (2008) The effects of cryptorchidism on the regulation of steroidogenesis and gap junctional communication in equine testes. Endokrynol Pol 59:112–118

    PubMed  Google Scholar 

  53. Schuppe HC, Meinhardt A (2005) Immune privilege and inflammation of the testis. Chem Immunol Allergy 88:1–14

    PubMed  CAS  Google Scholar 

  54. Pérez C, Sobarzo C, Jacobo P, Jarazo Dietrich S, Theas M, Denduchis B, Lustig L (2011) Impaired expression and distribution of adherens and gap junction proteins in the seminiferous tubules of rats undergoing autoimmune orchitis. Int J Androl 34:566–577

    Google Scholar 

  55. Altay B, Turna B, Oktem G, Aktuğ H, Semerci B, Bilir A (2008) Immunohistochemical expression of connexin 43 and occludin in the rat testis after epididymal and vasal ligation. Fertil Steril 90:141–147

    PubMed  CAS  Google Scholar 

  56. Lai-Cheong JE, Arita K, McGrath JA (2007) Genetic diseases of junctions. J Invest Dermatol 127:2713–2725

    PubMed  CAS  Google Scholar 

  57. Paznekas WA, Karczeski B, Vermeer S, Lowry RB, Delatycki M, Laurence F, Koivisto PA, Van Maldergem L, Boyadjiev SA, Bodurtha JN, Jabs EW (2009) GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum Mutat 30:724–733

    PubMed  CAS  Google Scholar 

  58. Tong D, Colley D, Thoo R, Li TY, Plante I, Laird DW, Bai D, Kidder GM (2009) Oogenesis defects in a mutant mouse model of oculodentodigital dysplasia. Dis Model Mech 2:157–167

    PubMed  CAS  Google Scholar 

  59. Gregory M, Kahiri CN, Barr KJ, Smith CE, Hermo L, Cyr DG, Kidder GM (2011) Male reproductive system defects and subfertility in a mutant mouse model of oculodentodigital dysplasia. Int J Androl 34:630–641

    Google Scholar 

  60. Wohlfahrt-Veje C, Main KM, Skakkebaek NE (2009) Testicular dysgenesis syndrome: foetal origin of adult reproductive problems. Clin Endocrinol (Oxf) 71:459–465

    Google Scholar 

  61. Skakkebaek NE, Berthelsen JG, Giwercman A, Müller J (1987) Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int J Androl 10:19–28

    PubMed  CAS  Google Scholar 

  62. Sharpe RM, McKinnell C, Kivlin C, Fisher JS (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–784

    PubMed  CAS  Google Scholar 

  63. Petersen PM, Skakkebaek NE, Giwercman A (1998) Gonadal function in men with testicular cancer: biological and clinical aspects. APMIS 106:24–34

    PubMed  CAS  Google Scholar 

  64. Møller H, Skakkebaek NE (1999) Risk of testicular cancer in subfertile men: case-control study. BMJ 318:559–562

    PubMed  Google Scholar 

  65. Jacobsen R, Bostofte E, Engholm G, Hansen J, Olsen JH, Skakkebaek NE, Moller H (2000) Risk of testicular cancer in men with abnormal semen characteristics: cohort study. BMJ 321:789–792

    PubMed  CAS  Google Scholar 

  66. Raman JD, Nobert CF, Goldstein M (2005) Increased incidence of testicular cancer in men presenting with infertility and abnormal semen analysis. J Urol 174:1819–1822

    PubMed  Google Scholar 

  67. Olesen IA, Hoei-Hansen CE, Skakkebaek NE, Petersen JH, Rajpert-De Meyts E, Jørgensen N (2007) Testicular carcinoma in situ in subfertile Danish men. Int J Androl 30:406–411

    Google Scholar 

  68. Paul C, Povey JE, Lawrence NJ, Selfridge J, Melton DW, Saunders PT (2007) Deletion of genes implicated in protecting the integrity of male germ cells has differential effects on the incidence of DNA breaks and germ cell loss. PLoS ONE 2:989

    Google Scholar 

  69. Rajpert-De Meyts E (2006) Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update 12:303–323

    PubMed  CAS  Google Scholar 

  70. Looijenga LH, Gillis AJ, Stoop HJ, Hersmus R, Oosterhuis JW (2007) Chromosomes and expression in human testicular germ-cell tumors: insight into their cell of origin and pathogenesis. Ann NY Acad Sci 1120:187–214

    PubMed  CAS  Google Scholar 

  71. Yamasaki H, Naus CC (1996) Role of connexin genes in growth control. Carcinogenesis 17:1199–1213

    PubMed  CAS  Google Scholar 

  72. Roger C, Mograbi B, Chevallier D, Michiels JF, Tanaka H, Segretain D, Pointis G, Fenichel P (2004) Disrupted traffic of connexin 43 in human testicular seminoma cells: overexpression of Cx43 induces membrane location and cell proliferation decrease. J Pathol 202:241–246

    PubMed  CAS  Google Scholar 

  73. Brehm R, Rüttinger C, Fischer P, Gashaw I, Winterhager E, Kliesch S, Bohle RM, Steger K, Bergmann M (2006) Transition from preinvasive carcinoma in situ to seminoma is accompanied by a reduction of connexin 43 expression in Sertoli cells and germ cells. Neoplasia 8:499–509

    PubMed  CAS  Google Scholar 

  74. Omori Y, Li Q, Nishikawa Y, Yoshioka T, Yoshida M, Nishimura T, Enomoto K (2007) Pathological significance of intracytoplasmic connexin proteins: implication in tumor progression. J Membr Biol 218:73–77

    PubMed  CAS  Google Scholar 

  75. Nakashima Y, Ono T, Yamanoi A, El-Assal ON, Kohno H, Nagasue N (2004) Expression of gap junction protein connexin32 in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Gastroenterol 39:763–768

    PubMed  CAS  Google Scholar 

  76. Kanczuga-Koda L, Sulkowski S, Koda M, Sulkowska M (2005) Alterations in connexin26 expression during colorectal carcinogenesis. Oncology 68:217–222

    PubMed  CAS  Google Scholar 

  77. Hong R, Lim SC (2008) Pathological significance of connexin 26 expression in colorectal adenocarcinoma. Oncol Rep 19:913–919

    PubMed  Google Scholar 

  78. Jee H, Nam KT, Kwon HJ, Han SU, Kim DY (2011) Altered expression and localization of connexin32 in human and murine gastric carcinogenesis. Dig Dis Sci 56:1323–1332

    PubMed  CAS  Google Scholar 

  79. Mauro V, Chevallier D, Gilleron J, Carette D, Defamie N, Gasc JM, Senegas-Balas F, Segretain D, Pointis G (2008) Aberrant cytoplasmic accumulation of connexin 43 in human testicular seminoma. Open Biomarkers J 1:20–27

    CAS  Google Scholar 

  80. Segretain D, Decrouy X, Dompierre J, Escalier D, Rahman N, Fiorini C, Mograbi B, Siffroi JP, Huhtaniemi I, Fenichel P, Pointis G (2003) Sequestration of connexin43 in the early endosomes: an early event of Leydig cell tumor progression. Mol Carcinog 38:179–187

    PubMed  CAS  Google Scholar 

  81. Li Q, Omori Y, Nishikawa Y, Yoshioka T, Yamamoto Y, Enomoto K (2007) Cytoplasmic accumulation of connexin32 protein enhances motility and metastatic ability of human hepatoma cells in vitro and in vivo. Int J Cancer 121:536–546

    PubMed  CAS  Google Scholar 

  82. Huang RP, Fan Y, Hossain MZ, Peng A, Zeng ZL, Boynton AL (1998) Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Cancer Res 58:5089–5096

    PubMed  CAS  Google Scholar 

  83. Quin H, Shao Q, Thomas T, Kalra J, Alaoui-Jamali MA, Laird DW (2003) Connexin26 regulates the expression of angiogenesis-related genes in human breast tumor cells by both GJIC-dependent and -independent mechanisms. Cell Commun Adhes 10:387–393

    Google Scholar 

  84. Kalra J, Shao Q, Qin H, Thomas T, Alaoui-Jamali MA, Laird DW (2006) Cx26 inhibits breast MDA-MB-435 cell tumorigenic properties by a gap junctional intercellular communication-independent mechanism. Carcinogenesis 27:2528–2537

    PubMed  CAS  Google Scholar 

  85. Kliesch S, Behre HM, Hertle L, Bergmann M (1998) Alteration of Sertoli cell differentiation in the presence of carcinoma in situ in human testes. J Urol 160:1894–1898

    PubMed  CAS  Google Scholar 

  86. Decrouy X, Gasc JM, Pointis G, Segretain D (2004) Functional characterization of Cx43 based gap junctions during spermatogenesis. J Cell Physiol 200:146–154

    PubMed  CAS  Google Scholar 

  87. Fiorini C, Decrouy X, Defamie N, Segretain D, Pointis G (2006) Opposite regulation of connexin33 and connexin43 by LPS and IL-1alpha in spermatogenesis. Am J Physiol Cell Physiol 290:C733–C740

    PubMed  CAS  Google Scholar 

  88. McLachlan E, Shao Q, Laird DW (2007) Connexins and gap junctions in mammary gland development and breast cancer progression. J Membr Biol 218:107–121

    PubMed  CAS  Google Scholar 

  89. Francis R, Xu X, Park H, Wei CJ, Chang S, Chatterjee B, Lo C (2011) Connexin43 modulates cell polarity and directional cell migration by regulating microtubule dynamics. PLoS ONE 6:e26379

    PubMed  CAS  Google Scholar 

  90. Steiner M, Weipoltshammer K, Viehberger G, Meixner EM, Lunglmayr G, Schöfer C (2011) Immunohistochemical expression analysis of Cx43, Cx26, c-KIT and PlAP in contralateral testis biopsies of patients with non-seminomatous testicular germ cell tumor. Histochem Cell Biol 135:73–81

    PubMed  CAS  Google Scholar 

  91. Richiardi L, Bellocco R, Adami HO, Torrång A, Barlow L, Hakulinen T, Rahu M, Stengrevics A, Storm H, Tretli S, Kurtinaitis J, Tyczynski JE, Akre O (2004) Testicular cancer incidence in eight northern European countries: secular and recent trends. Cancer Epidemiol Biomarkers Prev 12:2157–2166

    Google Scholar 

  92. Esteves SC, Zini A, Aziz N, Alvarez JG, Sabanegh ES Jr, Agarwal A (2012) Critical appraisal of World Health Organization’s new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology 79:16–22

    PubMed  Google Scholar 

  93. Walsh T, Croughan M, Schembri M, Chan J, Turek P (2009) Increased risk of testicular germ cell cancer among infertile men. MD Arch Intern Med 169:351–356

    Google Scholar 

  94. Peng X, Zeng X, Peng S, Deng D, Zhang J (2009) The association risk of male subfertility and testicular cancer: a systematic review. PLoS ONE 4:e5591

    PubMed  Google Scholar 

  95. Hotaling JM, Walsh TJ (2009) Male infertility: a risk factor for testicular cancer. Nat Rev Urol 10:550–556

    Google Scholar 

  96. Favilla V, Cimino S, Madonia M, Morgia G (2010) New advances in clinical biomarkers in testis cancer. Front Biosci 1:456–477

    Google Scholar 

  97. Trigo JM, Tabernero JM, Paz-Ares L, García-Llano JL, Mora J, Lianes P, Esteban E, Salazar R, López-López JJ, Cortés-Funes H (2000) Tumor markers at the time of recurrence in patients with germ cell tumors. Cancer 1:162–168

    Google Scholar 

  98. Chieffi P (2011) New prognostic markers and potential therapeutic targets in human testicular germ cell tumors. Curr Med Chem 18:5033–5040

    PubMed  CAS  Google Scholar 

  99. Huang S, Li H, Ding X, Xiong C (2009) Presence and characterization of cell-free seminal RNA in healthy individuals: implications for noninvasive disease diagnosis and gene expression studies of the male reproductive system. Clin Chem 55:1967–1976

    PubMed  CAS  Google Scholar 

  100. Corsini LR, Bronte G, Terrasi M, Amodeo V, Fanale D, Fiorentino E, Cicero G, Bazan V, Russo A (2012) The role of microRNAs in cancer: diagnostic and prognostic biomarkers and targets of therapies. Expert Opin Ther Targets 16:S103–S109

    PubMed  CAS  Google Scholar 

  101. Zen K, Zhang CY (2012) Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 32:326–348

    PubMed  Google Scholar 

  102. Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, Li L, Wang J, Li X, Shao Y, Liu Y, Ji J, Zhang J, Zen K, Zhang CY, Zhang C (2011) Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem 57:1722–1731

    PubMed  CAS  Google Scholar 

  103. Novotny GW, Belling K, Bramsen JB, Nielsen JE, Bork-Jensen J, Almstrup K, Sonne SB, Kjems J, Rajpert-De Meyts E, Leffers H (2012) MicroRNA expression profiling of carcinoma in situ (CIS) cells of the testis. Endocr Relat Cancer 19:365–379

    Google Scholar 

  104. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31:659–666

    PubMed  Google Scholar 

  105. Fichtlscherer S, Zeiher AM, Dimmeler S (2011) Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol 31:2383–2390

    PubMed  CAS  Google Scholar 

  106. Kandouz M, Batist G (2010) Gap junctions and connexins as therapeutic targets in cancer. Expert Opin Ther Targets 14:681–692

    PubMed  CAS  Google Scholar 

  107. King TJ, Bertram JS (2005) Connexins as targets for cancer chemoprevention and chemotherapy. Biochim Biophys Acta 1719:146–160

    PubMed  CAS  Google Scholar 

  108. Nicholas TW, Read SB, Burrows FJ, Kruse CA (2003) Suicide gene therapy with Herpes simplex virus thymidine kinase and ganciclovir is enhanced with connexins to improve gap junctions and bystander effects. Histol Histopathol 18:495–507

    PubMed  CAS  Google Scholar 

  109. Fang X, Huang T, Zhu Y, Yan Q, Chi Y, Jiang JX, Wang P, Matsue H, Kitamura M, Yao J (2011) Connexin43 hemichannels contribute to cadmium-induced oxidative stress and cell injury. Antioxid Redox Signal 14:2427–2439

    PubMed  CAS  Google Scholar 

  110. Hong X, Wang Q, Yang Y, Zheng S, Tong X, Zhang S, Tao L, Harris AL (2012) Gap junctions propagate opposite effects in normal and tumor testicular cells in response to cisplatin. Cancer Lett 317:165–171

    PubMed  CAS  Google Scholar 

  111. Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808

    PubMed  CAS  Google Scholar 

  112. Kim J, Lee S, Jeon B, Jang W, Moon C, Kim S (2011) Protection of spermatogenesis against gamma ray-induced damage by granulocyte colony-stimulating factor in mice. Andrologia 43:87–93

    PubMed  CAS  Google Scholar 

  113. Kuwabara M, Kakinuma Y, Katare RG, Ando M, Yamasaki F, Doi Y, Sato T (2007) Granulocyte colony-stimulating factor activates Wnt signal to sustain gap junction function through recruitment of beta-catenin and cadherin. FEBS Lett 581:4821–4830

    Google Scholar 

  114. Milberg P, Klocke R, Frommeyer G, Quang TH, Dieks K, Stypmann J, Osada N, Kuhlmann M, Fehr M, Milting H, Nikol S, Waltenberger J, Breithardt G, Eckardt L (2011) G-CSF therapy reduces myocardial repolarization reserve in the presence of increased arteriogenesis, angiogenesis and connexin 43 expression in an experimental model of pacing-induced heart failure. Basic Res Cardiol 106:995–1008

    PubMed  CAS  Google Scholar 

  115. Gilleron J, Carette D, Chevallier D, Segretain D, Pointis G (2012) Molecular connexin partner remodeling orchestrates connexin traffic: from physiology to pathophysiology. Crit Rev Biochem Mol Biol. doi:10.3109/10409238.2012.683482

  116. Yomogida K, Yagura Y, Nishimune Y (2002) Electroporated transgene-rescued spermatogenesis in infertile mutant mice with a Sertoli cell defect. Biol Reprod 67:712–717

    PubMed  CAS  Google Scholar 

  117. Kojima Y, Kurokawa S, Mizuno K, Umemoto Y, Sasaki S, Hayashi Y, Kohri K (2008) Gene transfer to sperm and testis: future prospects of gene therapy for male infertility. Curr Gene Ther 8:121–134

    PubMed  CAS  Google Scholar 

  118. O’Bryan MK, de Kretser D (2006) Mouse models for genes involved in impaired spermatogenesis. Int J Androl 29:76–89

    PubMed  Google Scholar 

  119. Miyamoto T, Tsujimura A, Miyagawa Y, Koh E, Namiki M, Sengoku K (2012) Male infertility and its causes in human. Adv Urol 2012:384520

    PubMed  Google Scholar 

  120. Tanimoto R, Abarzua F, Sakaguchi M, Takaishi M, Nasu Y, Kumon H, Huh NH (2007) REIC/Dkk-3 as a potential gene therapeutic agent against human testicular cancer. Int J Mol Med 19:363–368

    PubMed  CAS  Google Scholar 

  121. Bikou O, Thomas D, Trappe K, Lugenbiel P, Kelemen K, Koch M, Soucek R, Voss F, Becker R, Katus HA, Bauer A (2011) Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovasc Res 92:218–225

    PubMed  CAS  Google Scholar 

  122. Igarashi T, Finet JE, Takeuchi A, Fujino Y, Strom M, Greener ID, Rosenbaum DS, Donahue JK (2012) Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation. Circulation 125:216–225

    PubMed  CAS  Google Scholar 

  123. Staecker H, Brough DE, Praetorius M, Baker K (2004) Drug delivery to the inner ear using gene therapy. Otolaryngol Clin North Am 37:1091–1108

    PubMed  Google Scholar 

  124. Abraham MR, Henrikson CA, Tung L, Chang MG, Aon M, Xue T, Li RA, O’ Rourke B, Marban E (2005) Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 97:159–167

    PubMed  CAS  Google Scholar 

  125. McIver SC, Roman SD, Nixon B, McLaughlin EA (2012) miRNA and mammalian male germ cells. Hum Reprod Update 18:44–59

    PubMed  CAS  Google Scholar 

  126. Anderson C, Catoe H, Werner R (2006) MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 34:5863–5871

    PubMed  CAS  Google Scholar 

  127. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491

    PubMed  CAS  Google Scholar 

  128. Rau F, Freyermuth F, Fugier C, Villemin JP, Fischer MC, Jost B, Dembele D, Gourdon G, Nicole A, Duboc D, Wahbi K, Day JW, Fujimura H, Takahashi MP, Auboeuf D, Dreumont N, Furling D, Charlet-Berguerand N (2011) Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol 18:840–845

    PubMed  CAS  Google Scholar 

  129. Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, Iwasaki M, Sunamura S, Takeuchi Y, Fukumoto S, Saito K, Nakamura T, Siomi H, Ito H, Arai Y, Shinomiya K, Takeda S (2009) A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci USA 106:20794–20799

    Google Scholar 

  130. Lian J, Zhang X, Tian H, Liang N, Wang Y, Liang C, Li X, Sun F (2009) Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol 7:13

    PubMed  Google Scholar 

  131. Lian J, Tian H, Liu L, Zhang XS, Li WQ, Deng YM, Yao GD, Yin MM, Sun F (2010) Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1. Cell Death Dis 1:e94

    PubMed  CAS  Google Scholar 

  132. Severs NJ, Bruce AF, Dupont E, Rothery S (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80:9–19

    PubMed  CAS  Google Scholar 

  133. Song YN, Zhang H, Zhao JY, Guo XL (2009) Connexin 43, a new therapeutic target for cardiovascular diseases. Pharmazie 64:291–295

    PubMed  CAS  Google Scholar 

  134. Pointis G (2006) Connexin43: emerging role in erectile function. Int J Biochem Cell Biol 38:1642–1646

    PubMed  CAS  Google Scholar 

  135. Lee SK, Teng Y, Wong HK, Ng TK, Huang L, Lei P, Choy KW, Liu Y, Zhang M, Lam DS, Yam GH, Pang CP (2011) MicroRNA-145 regulates human corneal epithelial differentiation. PLoS ONE 6:e21249

    PubMed  CAS  Google Scholar 

  136. Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J, Yue S, Huang SH, Xu W, Waldron J, O’Sullivan B, Liu FF (2011) MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res 71:2381–2391

    PubMed  CAS  Google Scholar 

  137. Parrington J, Coward K, Gadea J (2011) Sperm and testis mediated DNA transfer as a means of gene therapy. Syst Biol Reprod Med 57:35–42

    PubMed  CAS  Google Scholar 

  138. Kojima Y, Mizuno K, Umemoto Y, Sasaki S, Hayashi Y, Kohri K (2011) Therapeutic potential of gene transfer to testis; myth or reality? In: Kang C (ed) Gene therapy applications. InTech. ISBN: 978-953-307-541-9. Available from: http://www.intechopen.com/books/gene-therapy-applications/therapeutic-potential-of-gene-transfer-to-testis-myth-or-reality-

Download references

Acknowledgments

The preparation of this review was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM). The authors would like to thank Laure Gilleron for critically reading the manuscript and Jeannine Colombani for secretarial assistance. JG is a doctoral and postdoctoral research fellow of the French Ministry of Research and Technology and of EMBO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Pointis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevallier, D., Carette, D., Segretain, D. et al. Connexin 43 a check-point component of cell proliferation implicated in a wide range of human testis diseases. Cell. Mol. Life Sci. 70, 1207–1220 (2013). https://doi.org/10.1007/s00018-012-1121-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1121-3

Keywords

Navigation