Skip to main content

Advertisement

Log in

MicroRNA-203 enhances Coxsackievirus B3 replication through targeting zinc finger protein-148

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Coxsackievirus B3 (CVB3) is the primary causal agent of viral myocarditis. During infection, it hijacks host genes to favour its own replication. However, the underlying mechanism is still unclear. Although the viral receptor is an important factor for viral infectivity, other factors such as microRNAs (miRNA) may also play an essential role in its replication after host cell entry. miRNAs are post-transcriptional gene regulators involved in various fundamental biological processes as well as in diseases. To identify miRNAs involved in CVB3 pathogenesis, we performed microarray analysis of miRNAs using CVB3-infected murine hearts and identified miR-203 as one of the most upregulated candidates. We found that miR-203 upregulation is through the activation of protein kinase C/transcription factor AP-1 pathway. We further identified zinc finger protein-148 (ZFP-148), a transcription factor, as a novel target of miR-203. Ectopic expression of miR-203 downregulated ZFP-148 translation, increased cell viability and subsequently enhanced CVB3 replication. Silencing of ZFP-148 by siRNA showed similar effects on CVB3 replication. Finally, analyses of the signalling cascade downstream of ZFP-148 revealed that miR-203-induced suppression of ZFP-148 differentially regulated the expression of prosurvival and proapoptotic genes of the Bcl-2 family proteins as well as the cell cycle regulators. This altered gene expression promoted cell survival and growth, which provided a favourable environment for CVB3 replication, contributing to the further damage of the infected cells. Taken together, this study identified a novel target of miR-203 and revealed, for the first time, the molecular link between miR-203/ZFP-148 and the pathogenesis of CVB3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CVB3:

Coxsackievirus B3

DCM:

Dilated cardiomyopathy

DMEM:

Dulbecco’s modified Eagle’s medium

miRNA:

microRNA

MOI:

Multiplicity of infection

PKC:

Protein kinase C

pi:

Post-infection

pfu:

Plaque-forming unit

UTR:

Untranslated region

ZFP:

Zinc finger protein

References

  1. Esfandiarei M, McManus BM (2008) Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol 3:127–155. doi:10.1146/annurev.pathmechdis.3.121806.151534

    Article  PubMed  CAS  Google Scholar 

  2. Kuhl U, Pauschinger M, Seeberg B, Lassner D, Noutsias M, Poller W, Schultheiss HP (2005) Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 112(13):1965–1970. doi:10.1161/CIRCULATIONAHA.105.548156

    Article  PubMed  Google Scholar 

  3. Cheung PK, Yuan J, Zhang HM, Chau D, Yanagawa B, Suarez A, McManus B, Yang D (2005) Specific interactions of mouse organ proteins with the 5′ untranslated region of Coxsackievirus B3: potential determinants of viral tissue tropism. J Med Virol 77(3):414–424. doi:10.1002/jmv.20470

    Article  PubMed  CAS  Google Scholar 

  4. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275(5304):1320–1323

    Article  PubMed  CAS  Google Scholar 

  5. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  6. Cullen BR (2010) Five questions about viruses and microRNAs. PLoS Pathog 6(2):e1000787. doi:10.1371/journal.ppat.1000787

    Article  PubMed  Google Scholar 

  7. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63. doi:10.1038/nature07228

    Article  PubMed  CAS  Google Scholar 

  8. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. doi:10.1016/j.cell.2004.12.035

    Article  PubMed  CAS  Google Scholar 

  9. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773. doi:10.1038/nature03315

    Article  PubMed  CAS  Google Scholar 

  10. Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J (2010) miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 31(5):766–776. doi:10.1093/carcin/bgp250

    Article  PubMed  CAS  Google Scholar 

  11. Ikeda S, Pu WT (2010) Expression and function of microRNAs in heart disease. Curr Drug Targets 11(8):913–925

    Article  PubMed  CAS  Google Scholar 

  12. Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449(7164):919–922. doi:10.1038/nature06205

    Article  PubMed  CAS  Google Scholar 

  13. Ziegelbauer JM, Sullivan CS, Ganem D (2009) Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 41(1):130–134. doi:10.1038/ng.266

    Article  PubMed  CAS  Google Scholar 

  14. Choy EY, Siu KL, Kok KH, Lung RW, Tsang CM, To KF, Kwong DL, Tsao SW, Jin DY (2008) An Epstein–Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med 205(11):2551–2560. doi:10.1084/jem.20072581

    Article  PubMed  CAS  Google Scholar 

  15. Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435(7042):682–686. doi:10.1038/nature03576

    Article  PubMed  CAS  Google Scholar 

  16. Voellenkle C, van Rooij J, Cappuzzello C, Greco S, Arcelli D, Di Vito L, Melillo G, Rigolini R, Costa E, Crea F, Capogrossi MC, Napolitano M, Martelli F (2010) MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics 42(3):420–426. doi:10.1152/physiolgenomics.00211.2009

    Article  PubMed  CAS  Google Scholar 

  17. Cheng PY, Kagawa N, Takahashi Y, Waterman MR (2000) Three zinc finger nuclear proteins, Sp1, Sp3, and a ZBP-89 homologue, bind to the cyclic adenosine monophosphate-responsive sequence of the bovine adrenodoxin gene and regulate transcription. Biochemistry 39(15):4347–4357

    Article  PubMed  CAS  Google Scholar 

  18. Yuan J, Liu Z, Lim T, Zhang H, He J, Walker E, Shier C, Wang Y, Su Y, Sall A, McManus B, Yang D (2009) CXCL10 inhibits viral replication through recruitment of natural killer cells in Coxsackievirus B3-induced myocarditis. Circ Res 104(5):628–638. doi:10.1161/CIRCRESAHA.108.192179

    Article  PubMed  CAS  Google Scholar 

  19. Luo L, Ye L, Liu G, Shao G, Zheng R, Ren Z, Zuo B, Xu D, Lei M, Jiang S, Deng C, Xiong Y, Li F (2010) Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One 5(8):e11744. doi:10.1371/journal.pone.0011744

    Article  PubMed  Google Scholar 

  20. Yuan J, Stein DA, Lim T, Qiu D, Coughlin S, Liu Z, Wang Y, Blouch R, Moulton HM, Iversen PL, Yang D (2006) Inhibition of Coxsackievirus B3 in cell cultures and in mice by peptide-conjugated morpholino oligomers targeting the internal ribosome entry site. J Virol 80(23):11510–11519. doi:10.1128/JVI.00900-06

    Article  PubMed  CAS  Google Scholar 

  21. Mestdagh P, Feys T, Bernard N, Guenther S, Chen C, Speleman F, Vandesompele J (2008) High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 36(21):e143. doi:10.1093/nar/gkn725

    Article  PubMed  Google Scholar 

  22. Paloheimo O, Ihalainen TO, Tauriainen S, Valilehto O, Kirjavainen S, Niskanen EA, Laakkonen JP, Hyoty H, Vihinen-Ranta M (2011) Coxsackievirus B3-induced cellular protrusions: structural characteristics and functional competence. J Virol 85(13):6714–6724. doi:10.1128/JVI.00247-10

    Article  PubMed  CAS  Google Scholar 

  23. Ye X, Liu Z, Hemida MG, Yang D (2011) Targeted delivery of mutant tolerant anti-coxsackievirus artificial microRNAs using folate conjugated bacteriophage Phi29 pRNA. PLoS One 6(6):e21215. doi:10.1371/journal.pone.0021215

    Article  PubMed  CAS  Google Scholar 

  24. Sonkoly E, Wei T, Pavez Lorie E, Suzuki H, Kato M, Torma H, Stahle M, Pivarcsi A (2010) Protein kinase C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes. J Invest Dermatol 130(1):124–134. doi:10.1038/jid.2009.294

    Article  PubMed  CAS  Google Scholar 

  25. Moffatt CE, Lamont RJ (2011) Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells. Infect Immun 79(7):2632–2637. doi:10.1128/IAI.00082-11

    Article  PubMed  CAS  Google Scholar 

  26. Si X, Gao G, Wong J, Wang Y, Zhang J, Luo H (2008) Ubiquitination is required for effective replication of Coxsackievirus B3. PLoS One 3(7):e2585. doi:10.1371/journal.pone.0002585

    Article  PubMed  Google Scholar 

  27. Lowe SW, Sherr CJ (2003) Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13(1):77–83

    Article  PubMed  CAS  Google Scholar 

  28. Zhang CZ, Chen GG, Lai PB (2010) Transcription factor ZBP-89 in cancer growth and apoptosis. Biochim Biophys Acta 1806(1):36–41. doi:10.1016/j.bbcan.2010.03.002

    PubMed  CAS  Google Scholar 

  29. Shi Y, Chen C, Lisewski U, Wrackmeyer U, Radke M, Westermann D, Sauter M, Tschope C, Poller W, Klingel K, Gotthardt M (2009) Cardiac deletion of the Coxsackievirus-adenovirus receptor abolishes Coxsackievirus B3 infection and prevents myocarditis in vivo. J Am Coll Cardiol 53(14):1219–1226. doi:10.1016/j.jacc.2008.10.064

    Article  PubMed  CAS  Google Scholar 

  30. Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117(Pt 25):5965–5973. doi:10.1242/jcs.01589

    Article  PubMed  CAS  Google Scholar 

  31. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20(19):2390–2400. doi:10.1038/sj.onc.1204383

    Article  PubMed  CAS  Google Scholar 

  32. Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452(7184):225–229. doi:10.1038/nature06642

    Article  PubMed  CAS  Google Scholar 

  33. Stanczyk J, Ospelt C, Karouzakis E, Filer A, Raza K, Kolling C, Gay R, Buckley CD, Tak PP, Gay S, Kyburz D (2011) Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthr Rheum 63(2):373–381. doi:10.1002/art.30115

    Article  Google Scholar 

  34. Schmittgen TD, Jiang J, Liu Q, Yang L (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32(4):e43. doi:10.1093/nar/gnh040

    Article  PubMed  Google Scholar 

  35. Sera T (2005) Inhibition of virus DNA replication by artificial zinc finger proteins. J Virol 79(4):2614–2619. doi:10.1128/JVI.79.4.2614-2619.2005

    Article  PubMed  CAS  Google Scholar 

  36. Zimmerman KA, Fischer KP, Joyce MA, Tyrrell DL (2008) Zinc finger proteins designed to specifically target duck hepatitis B virus covalently closed circular DNA inhibit viral transcription in tissue culture. J Virol 82(16):8013–8021. doi:10.1128/JVI.00366-08

    Article  PubMed  CAS  Google Scholar 

  37. Law DJ, Labut EM, Merchant JL (2006) Intestinal overexpression of ZNF148 suppresses ApcMin/+ neoplasia. Mamm Genome 17(10):999–1004. doi:10.1007/s00335-006-0052-4

    Article  PubMed  CAS  Google Scholar 

  38. Yuan J, Cheung PK, Zhang H, Chau D, Yanagawa B, Cheung C, Luo H, Wang Y, Suarez A, McManus BM, Yang D (2004) A phosphorothioate antisense oligodeoxynucleotide specifically inhibits Coxsackievirus B3 replication in cardiomyocytes and mouse hearts. Lab Invest 84(6):703–714. doi:10.1038/labinvest.3700083

    Article  PubMed  CAS  Google Scholar 

  39. Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13. doi:10.1038/ng1798

    Article  PubMed  CAS  Google Scholar 

  40. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531. doi:10.1038/nrg1379

    Article  PubMed  CAS  Google Scholar 

  41. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105. doi:10.1016/j.molcel.2007.06.017

    Article  PubMed  CAS  Google Scholar 

  42. Feng Y, Wang X, Xu L, Pan H, Zhu S, Liang Q, Huang B, Lu J (2009) The transcription factor ZBP-89 suppresses p16 expression through a histone modification mechanism to affect cell senescence. FEBS J 276(15):4197–4206. doi:10.1111/j.1742-4658.2009.07128.x

    Article  PubMed  CAS  Google Scholar 

  43. Salmon M, Owens GK, Zehner ZE (2009) Over-expression of the transcription factor, ZBP-89, leads to enhancement of the C2C12 myogenic program. Biochim Biophys Acta 1793(7):1144–1155. doi:10.1016/j.bbamcr.2009.01.019

    Article  PubMed  CAS  Google Scholar 

  44. Bai L, Yoon SO, King PD, Merchant JL (2004) ZBP-89-induced apoptosis is p53-independent and requires JNK. Cell Death Differ 11(6):663–673. doi:10.1038/sj.cdd.4401393

    PubMed  CAS  Google Scholar 

  45. Merchant JL, Bai L, Okada M (2003) ZBP-89 mediates butyrate regulation of gene expression. J Nutr 133(7 Suppl):2456S–2460S

    PubMed  CAS  Google Scholar 

  46. Klopfleisch R, Gruber AD (2009) Differential expression of cell cycle regulators p21, p27 and p53 in metastasizing canine mammary adenocarcinomas versus normal mammary glands. Res Vet Sci 87(1):91–96. doi:10.1016/j.rvsc.2008.12.010

    Article  PubMed  CAS  Google Scholar 

  47. Hauck L, Harms C, Grothe D, An J, Gertz K, Kronenberg G, Dietz R, Endres M, von Harsdorf R (2007) Critical role for FoxO3a-dependent regulation of p21CIP1/WAF1 in response to statin signaling in cardiac myocytes. Circ Res 100(1):50–60. doi:10.1161/01.RES.0000254704.92532.b9

    Article  PubMed  CAS  Google Scholar 

  48. Chiarle R, Pagano M, Inghirami G (2001) The cyclin dependent kinase inhibitor p27 and its prognostic role in breast cancer. Breast Cancer Res 3(2):91–94

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Maged Gomaa Hemida is a recipient of the CIHR-IMPACT postdoctoral training fellowship and the Heart and Stroke foundation of Canada postdoctoral training fellowship. Xin Ye is supported by a UGF Award from the University of British Columbia. We would like to thank Claire Smith and Lubos Bohunek for their help with animal experiments. We also want to thank Dr. Thomas Ibraham for his help with the confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decheng Yang.

Additional information

Maged Gomaa Hemida and Xin Ye contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 561 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemida, M.G., Ye, X., Zhang, H.M. et al. MicroRNA-203 enhances Coxsackievirus B3 replication through targeting zinc finger protein-148. Cell. Mol. Life Sci. 70, 277–291 (2013). https://doi.org/10.1007/s00018-012-1104-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1104-4

Keywords

Navigation