Skip to main content

Advertisement

Log in

Reactivation of latent HIV-1 by a wide variety of butyric acid-producing bacteria

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Latently infected cells harbor human immunodeficiency virus type 1 (HIV-1) proviral DNA copies integrated in heterochromatin, allowing persistence of transcriptionally silent proviruses. It is widely accepted that hypoacetylation of histone proteins by histone deacetylases (HDACs) is involved in maintaining the HIV-1 latency by repressing viral transcription. HIV-1 replication can be induced from latently infected cells by environmental factors, such as inflammation and co-infection with other microbes. It is known that a bacterial metabolite butyric acid inhibits catalytic action of HDAC and induces transcription of silenced genes including HIV-1 provirus. There are a number of such bacteria in gut, vaginal, and oral cavities that produce butyric acid during their anaerobic glycolysis. Since these organs are known to be the major site of HIV-1 transmission and its replication, we explored a possibility that explosive viral replication in these organs could be ascribable to butyric acid produced from anaerobic resident bacteria. In this study, we demonstrate that the culture supernatant of various bacteria producing butyric acid could greatly reactivate the latently-infected HIV-1. These bacteria include Fusobacterium nucleatum (commonly present in oral cavity, and gut), Clostridium cochlearium, Eubacterium multiforme (gut), and Anaerococcus tetradius (vagina). We also clarified that butyric acid in these culture supernatants could induce histone acetylation and HIV-1 replication by inhibiting HDAC. Our observations indicate that butyric acid-producing bacteria could be involved in AIDS progression by reactivating the latent HIV provirus and, subsequently, by eliminating such bacterial infection may contribute to the prevention of the AIDS development and transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

ChIP:

Chromatin immunoprecipitation

HDAC:

Histone deacetylases

HIV-1:

Human immunodeficiency virus type 1

LTR:

Long terminal repeat

References

  1. Colin L, Van Lint C (2009) Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 6:111

    Article  PubMed  Google Scholar 

  2. Pace MJ, Agosto L, Graf EH, O’Doherty U (2011) HIV reservoirs and latency models. Virology 411:344–354

    Article  PubMed  CAS  Google Scholar 

  3. Marcello A (2006) Latency: the hidden HIV-1 challenge. Retrovirology 3:7

    Article  PubMed  Google Scholar 

  4. Bafica A, Scanga CA, Schito M, Chaussabel D, Sher A (2004) Influence of coinfecting pathogens on HIV expression: evidence for a role of Toll-like receptors. J Immunol 172:7229–7234

    PubMed  CAS  Google Scholar 

  5. Mbopi-Keou FX, Belec L, Teo CG, Scully C, Porter SR (2002) Synergism between HIV and other viruses in the mouth. Lancet Infect Dis 2:416–424

    Article  PubMed  Google Scholar 

  6. Okamoto T, Akagi T, Shima H, Miwa M, Shimotohno K (1987) Superinduction of trans-activation accounts for augmented human immunodeficiency virus replication in HTLV-I-transformed cells. Jpn J Cancer Res 78:1297–1301

    PubMed  CAS  Google Scholar 

  7. Okamoto T, Matsuyama T, Mori S, Hamamoto Y, Kobayashi N et al (1989) Augmentation of human immunodeficiency virus type 1 gene expression by tumor necrosis factor alpha. AIDS Res Hum Retroviruses 5:131–138

    Article  PubMed  CAS  Google Scholar 

  8. Belyakov IM, Ahlers JD (2008) Functional CD8 + CTLs in mucosal sites and HIV infection: moving forward toward a mucosal AIDS vaccine. Trends Immunol 29:574–585

    Article  PubMed  CAS  Google Scholar 

  9. Brenchley JM, Douek DC (2008) HIV infection and the gastrointestinal immune system. Mucosal Immunol 1:23–30

    Article  PubMed  CAS  Google Scholar 

  10. Gupta K, Klasse PJ (2006) How do viral and host factors modulate the sexual transmission of HIV? Can transmission be blocked? PLoS Med 3:e79

    Article  PubMed  Google Scholar 

  11. Kotler DP (2005) HIV infection and the gastrointestinal tract. AIDS 19:107–117

    Article  PubMed  Google Scholar 

  12. Kornbluth RS, Oh PS, Munis JR, Cleveland PH, Richman DD (1989) Interferons and bacterial lipopolysaccharide protect macrophages from productive infection by human immunodeficiency virus in vitro. J Exp Med 169:1137–1151

    Article  PubMed  CAS  Google Scholar 

  13. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365–1371

    Article  PubMed  CAS  Google Scholar 

  14. Haynes BF (2006) Gut microbes out of control in HIV infection. Nat Med 12:1351–1352

    Article  PubMed  CAS  Google Scholar 

  15. Bernstein MS, Tong-Starksen SE, Locksley RM (1991) Activation of human monocyte-derived macrophages with lipopolysaccharide decreases human immunodeficiency virus replication in vitro at the level of gene expression. J Clin Invest 88:540–545

    Article  PubMed  CAS  Google Scholar 

  16. Verani A, Scarlatti G, Comar M, Tresoldi E, Polo S et al (1997) C–C chemokines released by lipopolysaccharide (LPS)-stimulated human macrophages suppress HIV-1 infection in both macrophages and T cells. J Exp Med 185:805–816

    Article  PubMed  CAS  Google Scholar 

  17. Imai K, Ochiai K, Okamoto T (2009) Reactivation of latent HIV-1 infection by the periodontopathic bacterium Porphyromonas gingivalis involves histone modification. J Immunol 182:3688–3695

    Article  PubMed  CAS  Google Scholar 

  18. Kurita-Ochiai T, Fukushima K, Ochiai K (1995) Volatile fatty acids, metabolic by-products of periodontopathic bacteria, inhibit lymphocyte proliferation and cytokine production. J Dent Res 74:1367–1373

    Article  PubMed  CAS  Google Scholar 

  19. Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268:462–464

    Article  PubMed  CAS  Google Scholar 

  20. Bisgrove D, Lewinski M, Bushman F, Verdin E (2005) Molecular mechanisms of HIV-1 proviral latency. Expert Rev Anti Infect Ther 3:805–814

    Article  PubMed  CAS  Google Scholar 

  21. Macfarlane GT, Gibson GR (1995) Microbiological aspects of short chain fatty acid production in the large bowel. In: Cummings JH, Rombeau JL, Sakata T (eds) Physiological and clinical aspects of short-chain fatty acids. Cambridge University Press, Cambridge, pp 87–105

  22. Murdoch DA (1998) Gram-positive anaerobic cocci. Clin Microbiol Rev 11:81–120

    PubMed  CAS  Google Scholar 

  23. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    Article  PubMed  CAS  Google Scholar 

  24. Wilson MJ, Hall V, Brazier J, Lewis MA (2000) Evaluation of a phenotypic scheme for identification of the ‘butyrate-producing’ Peptostreptococcus species. J Med Microbiol 49:747–751

    PubMed  CAS  Google Scholar 

  25. Butera ST, Perez VL, Wu BY, Nabel GJ, Folks TM (1991) Oscillation of the human immunodeficiency virus surface receptor is regulated by the state of viral activation in a CD4 + cell model of chronic infection. J Virol 65:4645–4653

    PubMed  CAS  Google Scholar 

  26. Folks TM, Clouse KA, Justement J, Rabson A, Duh E et al (1989) Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci USA 86:2365–2368

    Article  PubMed  CAS  Google Scholar 

  27. Imai K, Okamoto T (2006) Transcriptional repression of human immunodeficiency virus type 1 by AP-4. J Biol Chem 281:12495–12505

    Article  PubMed  CAS  Google Scholar 

  28. Imai K, Togami H, Okamoto T (2010) Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol Chem 285:16538–16545

    Article  PubMed  CAS  Google Scholar 

  29. Sheridan PL, Mayall TP, Verdin E, Jones KA (1997) Histone acetyltransferases regulate HIV-1 enhancer activity in vitro. Genes Dev 11:3327–3340

    Article  PubMed  CAS  Google Scholar 

  30. Verdin E, Paras P Jr, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12:3249–3259

    PubMed  CAS  Google Scholar 

  31. Ando T, Kawabe T, Ohara H, Ducommun B, Itoh M et al (2001) Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J Biol Chem 276:42971–42977

    Article  PubMed  CAS  Google Scholar 

  32. Victoriano AF, Asamitsu K, Hibi Y, Imai K, Barzaga NG et al (2006) Inhibition of human immunodeficiency virus type 1 replication in latently infected cells by a novel IkappaB kinase inhibitor. Antimicrob Agents Chemother 50:547–555

    Article  PubMed  CAS  Google Scholar 

  33. Van Lint C, Emiliani S, Ott M, Verdin E (1996) Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J 15:1112–1120

    PubMed  Google Scholar 

  34. Liu LF (1989) DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem 58:351–375

    Article  PubMed  CAS  Google Scholar 

  35. Sorensen BS, Sinding J, Andersen AH, Alsner J, Jensen PB et al (1992) Mode of action of topoisomerase II-targeting agents at a specific DNA sequence. Uncoupling the DNA binding, cleavage and religation events. J Mol Biol 228:778–786

    Article  PubMed  CAS  Google Scholar 

  36. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8

    Article  PubMed  CAS  Google Scholar 

  37. Coull JJ, Romerio F, Sun JM, Volker JL, Galvin KM et al (2000) The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J Virol 74:6790–6799

    Article  PubMed  CAS  Google Scholar 

  38. Jiang G, Espeseth A, Hazuda DJ, Margolis DM (2007) c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J Virol 81:10914–10923

    Article  PubMed  CAS  Google Scholar 

  39. Tyagi M, Karn J (2007) CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J 26:4985–4995

    Article  PubMed  CAS  Google Scholar 

  40. Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E et al (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25:139–149

    Article  PubMed  CAS  Google Scholar 

  41. Golub EI, Li GR, Volsky DJ (1991) Induction of dormant HIV-1 by sodium butyrate: involvement of the TATA box in the activation of the HIV-1 promoter. AIDS 5:663–668

    Article  PubMed  CAS  Google Scholar 

  42. Brenchley JM, Price DA, Douek DC (2006) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7:235–239

    Article  PubMed  CAS  Google Scholar 

  43. Kantor B, Ma H, Webster-Cyriaque J, Monahan PE, Kafri T (2009) Epigenetic activation of unintegrated HIV-1 genomes by gut-associated short chain fatty acids and its implications for HIV infection. Proc Natl Acad Sci USA 106:18786–18791

    Article  PubMed  CAS  Google Scholar 

  44. Sewankambo N, Gray RH, Wawer MJ, Paxton L, McNaim D et al (1997) HIV-1 infection associated with abnormal vaginal flora morphology and bacterial vaginosis. Lancet 350:546–550

    Article  PubMed  CAS  Google Scholar 

  45. Spiegel CA, Amsel R, Eschenbach D, Schoenknecht F, Holmes KK (1980) Anaerobic bacteria in nonspecific vaginitis. N Engl J Med 303:601–607

    Article  PubMed  CAS  Google Scholar 

  46. Taha TE, Gray RH, Kumwenda NI, Hoover DR, Mtimavalye LA et al (1999) HIV infection and disturbances of vaginal flora during pregnancy. J Acquir Immune Defic Syndr Hum Retrovirol 20:52–59

    Article  PubMed  CAS  Google Scholar 

  47. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  PubMed  CAS  Google Scholar 

  48. Mortensen PB, Clausen MR (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl 216:132–148

    Article  PubMed  CAS  Google Scholar 

  49. Niederman R, Buyle-Bodin Y, Lu BY, Robinson P, Naleway C (1997) Short-chain carboxylic acid concentration in human gingival crevicular fluid. J Dent Res 76:575–579

    Article  PubMed  CAS  Google Scholar 

  50. Stein TP, Koerner B, Schluter MD, Leskiw MJ, Gaprindachvilli T et al (1997) Weight loss, the gut and the inflammatory response in aids patients. Cytokine 9:143–147

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Marni Cueno for critical reading of the manuscript and expert language editing, and Mr. Hiroaki togami for technical assistance. This work was supported by grants-in-aid from the Ministry of Health, Labor and Welfare of Japan, the Ministry of Education, Culture, Sports, Science and Technology of Japan, Dental Research Center, Nihon University School of Dentistry, Tokyo, the Takeda Science Foundation, the Waksman Foundation and “Strategic Research Base Development” Program for Private Universities from Ministry of Education, Culture, Sports, Science and Technology of Japan, 2010-2014 (S1001024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Okamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, K., Yamada, K., Tamura, M. et al. Reactivation of latent HIV-1 by a wide variety of butyric acid-producing bacteria. Cell. Mol. Life Sci. 69, 2583–2592 (2012). https://doi.org/10.1007/s00018-012-0936-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0936-2

Keywords

Navigation