Skip to main content
Log in

Structural and functional relationships between photoreceptor tetraspanins and other superfamily members

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The two primary photoreceptor-specific tetraspanins are retinal degeneration slow (RDS) and rod outer segment membrane protein-1 (ROM-1). These proteins associate together to form different complexes necessary for the proper structure of the photoreceptor outer segment rim region. Mutations in RDS cause blinding retinal degenerative disease in both rods and cones by mechanisms that remain unknown. Tetraspanins are implicated in a variety of cellular processes and exert their function via the formation of tetraspanin-enriched microdomains. This review focuses on correlations between RDS and other members of the tetraspanin superfamily, particularly emphasizing protein structure, complex assembly, and post-translational modifications, with the goal of furthering our understanding of the structural and functional role of RDS and ROM-1 in outer segment morphogenesis and maintenance, and our understanding of the pathogenesis associated with RDS and ROM-1 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58(9):1189–1205

    Article  PubMed  CAS  Google Scholar 

  2. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6(10):801–811. doi:10.1038/nrm1736

    Article  PubMed  CAS  Google Scholar 

  3. Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19(9):434–446. doi:10.1016/j.tcb.2009.06.004

    Article  PubMed  CAS  Google Scholar 

  4. Stipp CS, Kolesnikova TV, Hemler ME (2003) EWI-2 regulates alpha3beta1 integrin-dependent cell functions on laminin-5. J Cell Biol 163(5):1167–1177. doi:10.1083/jcb.200309113jcb.200309113[pii]

    Article  PubMed  CAS  Google Scholar 

  5. Chang Y, Finnemann SC (2007) Tetraspanin CD81 is required for the alpha v beta5-integrin-dependent particle-binding step of RPE phagocytosis. J Cell Sci 120(Pt 17):3053–3063. doi:10.1242/jcs.006361

    Article  PubMed  CAS  Google Scholar 

  6. Hemler ME (2001) Specific tetraspanin functions. J Cell Biol 155(7):1103–1107

    Article  PubMed  CAS  Google Scholar 

  7. Ziyyat A, Rubinstein E, Monier-Gavelle F, Barraud V, Kulski O, Prenant M, Boucheix C, Bomsel M, Wolf JP (2006) CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J Cell Sci 119(Pt 3):416–424. doi:10.1242/jcs.02730

    Article  PubMed  CAS  Google Scholar 

  8. Charrin S, Manie S, Billard M, Ashman L, Gerlier D, Boucheix C, Rubinstein E (2003) Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun 304(1):107–112. doi:S0006291X0300545X[pii]

    Article  PubMed  CAS  Google Scholar 

  9. Farjo R, Naash MI (2006) The role of rds in outer segment morphogenesis and human retinal disease. Ophthalmic Genet 27(4):117–122

    Article  PubMed  Google Scholar 

  10. Caplan MJ, Kamsteeg EJ, Duffield A (2007) Tetraspan proteins: regulators of renal structure and function. Curr Opin Nephrol Hypertens 16(4):353–358. doi:10.1097/MNH.0b013e328177b1fa00041552-200707000-00011[pii]

    Article  PubMed  CAS  Google Scholar 

  11. Arikawa K, Molday LL, Molday RS, Williams DS (1992) Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. J Cell Biol 116(3):659–667

    Article  PubMed  CAS  Google Scholar 

  12. Molday RS, Hicks D, Molday L (1987) Peripherin A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28(1):50–61

    PubMed  CAS  Google Scholar 

  13. Chakraborty D, Conley SM, Stuck MW, Naash MI (2010) Differences in RDS trafficking, assembly and function in cones versus rods: insights from studies of C150S-RDS. Hum Mol Genet 19(24):4799–4812. doi:10.1093/hmg/ddq410

    Article  PubMed  CAS  Google Scholar 

  14. Sanyal S, Jansen HG (1981) Absence of receptor outer segments in the retina of rds mutant mice. Neurosci Lett 21(1):23–26

    Article  PubMed  CAS  Google Scholar 

  15. Cheng T, Peachey NS, Li S, Goto Y, Cao Y, Naash MI (1997) The effect of peripherin/rds haploinsufficiency on rod and cone photoreceptors. J Neurosci 17(21):8118–8128

    PubMed  CAS  Google Scholar 

  16. Hawkins RK, Jansen HG, Sanyal S (1985) Development and degeneration of retina in rds mutant mice: photoreceptor abnormalities in the heterozygotes. Exp Eye Res 41(6):701–720

    Article  PubMed  CAS  Google Scholar 

  17. Boesze-Battaglia K, Goldberg AF (2002) Photoreceptor renewal: a role for peripherin/rds. Int Rev Cytol 217:183–225

    Article  PubMed  CAS  Google Scholar 

  18. Boesze-Battaglia K, Goldberg AF, Dispoto J, Katragadda M, Cesarone G, Albert AD (2003) A soluble peripherin/Rds C-terminal polypeptide promotes membrane fusion and changes conformation upon membrane association. Exp Eye Res 77(4):505–514

    Article  PubMed  CAS  Google Scholar 

  19. Boesze-Battaglia K, Stefano FP, Fitzgerald C, Muller-Weeks S (2007) ROM-1 potentiates photoreceptor specific membrane fusion processes. Exp Eye Res 84(1):22–31

    Article  PubMed  CAS  Google Scholar 

  20. Boesze-Battagliaa K, Stefano FP (2002) Peripherin/rds fusogenic function correlates with subunit assembly. Exp Eye Res 75(2):227–231

    Article  PubMed  CAS  Google Scholar 

  21. Edrington TC 5th, Lapointe R, Yeagle PL, Gretzula CL, Boesze-Battaglia K (2007) Peripherin-2: an intracellular analogy to viral fusion proteins. Biochemistry 46(12):3605–3613. doi:10.1021/bi061820c

    Article  Google Scholar 

  22. Boesze-Battaglia K, Kong F, Lamba OP, Stefano FP, Williams DS (1997) Purification and light-dependent phosphorylation of a candidate fusion protein, the photoreceptor cell peripherin/rds. Biochemistry 36(22):6835–6846

    Article  PubMed  CAS  Google Scholar 

  23. Boesze-Battaglia K, Song H, Sokolov M, Lillo C, Pankoski-Walker L, Gretzula C, Gallagher B, Rachel RA, Jenkins NA, Copeland NG, Morris F, Jacob J, Yeagle P, Williams DS, Damek-Poprawa M (2007) The tetraspanin protein peripherin-2 forms a complex with melanoregulin, a putative membrane fusion regulator. Biochemistry 46(5):1256–1272

    Article  PubMed  CAS  Google Scholar 

  24. Damek-Poprawa M, Krouse J, Gretzula C, Boesze-Battaglia K (2005) A novel tetraspanin fusion protein, peripherin-2, requires a region upstream of the fusion domain for activity. J Biol Chem 280(10):9217–9224

    Article  PubMed  CAS  Google Scholar 

  25. Boesze-Battaglia K, Lamba OP, Napoli AA Jr, Sinha S, Guo Y (1998) Fusion between retinal rod outer segment membranes and model membranes: a role for photoreceptor peripherin/rds. Biochemistry 37(26):9477–9487. doi:10.1021/bi980173pbi980173p[pii]

    Article  PubMed  CAS  Google Scholar 

  26. Steinberg RH, Fisher SK, Anderson DH (1980) Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 190(3):501–508

    Article  PubMed  CAS  Google Scholar 

  27. Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315(9):1584–1592. doi:10.1016/j.yexcr.2008.09.020

    Article  PubMed  CAS  Google Scholar 

  28. Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28(2):106–112

    Article  PubMed  CAS  Google Scholar 

  29. Tam BM, Moritz OL, Papermaster DS (2004) The C terminus of peripherin/rds participates in rod outer segment targeting and alignment of disk incisures. Mol Biol Cell 15(4):2027–2037

    Article  PubMed  CAS  Google Scholar 

  30. Fariss RN, Molday RS, Fisher SK, Matsumoto B (1997) Evidence from normal and degenerating photoreceptors that two outer segment integral membrane proteins have separate transport pathways. J Comp Neurol 387(1):148–156

    Article  PubMed  CAS  Google Scholar 

  31. Garcia-Espana A, Chung PJ, Sarkar IN, Stiner E, Sun TT, Desalle R (2008) Appearance of new tetraspanin genes during vertebrate evolution. Genomics 91(4):326–334. doi:10.1016/j.ygeno.2007.12.005

    Article  PubMed  CAS  Google Scholar 

  32. Huang S, Yuan S, Dong M, Su J, Yu C, Shen Y, Xie X, Yu Y, Yu X, Chen S, Zhang S, Pontarotti P, Xu A (2005) The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics 86(6):674–684. doi:10.1016/j.ygeno.2005.08.004

    Article  PubMed  CAS  Google Scholar 

  33. Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E (2009) EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19(2):327–335. doi:10.1101/gr.073585.107

    Article  PubMed  CAS  Google Scholar 

  34. Li C, Ding XQ, O’Brien J, Al-Ubaidi MR, Naash MI (2003) Molecular characterization of the skate peripherin/rds gene: relationship to its orthologues and paralogues. Invest Ophthalmol Vis Sci 44(6):2433–2441

    Article  PubMed  Google Scholar 

  35. Kovalenko OV, Metcalf DG, DeGrado WF, Hemler ME (2005) Structural organization and interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol 5:11. doi:10.1186/1472-6807-5-11

    Article  PubMed  Google Scholar 

  36. Ding XQ, Stricker HM, Naash MI (2005) Role of the second intradiscal loop of peripherin/rds in homo and hetero associations. Biochemistry 44(12):4897–4904

    Article  PubMed  CAS  Google Scholar 

  37. Kitadokoro K, Ponassi M, Galli G, Petracca R, Falugi F, Grandi G, Bolognesi M (2002) Subunit association and conformational flexibility in the head subdomain of human CD81 large extracellular loop. Biol Chem 383(9):1447–1452. doi:10.1515/BC.2002.164

    Article  PubMed  CAS  Google Scholar 

  38. Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H (2001) Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 276(43):40055–40064. doi:10.1074/jbc.M105557200M105557200[pii]

    Article  PubMed  CAS  Google Scholar 

  39. Kovalenko OV, Yang X, Kolesnikova TV, Hemler ME (2004) Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem J 377(Pt 2):407–417. doi:10.1042/BJ20031037BJ20031037[pii]

    Article  PubMed  CAS  Google Scholar 

  40. Yang X, Kovalenko OV, Tang W, Claas C, Stipp CS, Hemler ME (2004) Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J Cell Biol 167(6):1231–1240. doi:10.1083/jcb.200404100

    Article  PubMed  CAS  Google Scholar 

  41. Zhang XA, Bontrager AL, Hemler ME (2001) Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem 276(27):25005–25013. doi:10.1074/jbc.M102156200M102156200[pii]

    Article  PubMed  CAS  Google Scholar 

  42. Chakraborty D, Ding XQ, Fliesler SJ, Naash MI (2008) Outer segment oligomerization of rds: evidence from mouse models and subcellular fractionation. Biochemistry 47(4):1144–1156. doi:10.1021/bi701807c

    Article  PubMed  CAS  Google Scholar 

  43. Goldberg AF, Molday RS (1996) Subunit composition of the peripherin/rds–rom-1 disk rim complex from rod photoreceptors: hydrodynamic evidence for a tetrameric quaternary structure. Biochemistry 35(19):6144–6149

    Article  PubMed  CAS  Google Scholar 

  44. Goldberg AF, Loewen CJ, Molday RS (1998) Cysteine residues of photoreceptor peripherin/rds: role in subunit assembly and autosomal dominant retinitis pigmentosa. Biochemistry 37(2):680–685

    Article  PubMed  CAS  Google Scholar 

  45. Chakraborty D, Ding XQ, Conley SM, Fliesler SJ, Naash MI (2009) Differential requirements for retinal degeneration slow intermolecular disulfide-linked oligomerization in rods versus cones. Hum Mol Genet 18(5):797–808. doi:10.1093/hmg/ddn406

    PubMed  CAS  Google Scholar 

  46. Clarke G, Goldberg AF, Vidgen D, Collins L, Ploder L, Schwarz L, Molday LL, Rossant J, Szel A, Molday RS, Birch DG, McInnes RR (2000) Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nat Genet 25(1):67–73

    Article  PubMed  CAS  Google Scholar 

  47. Poetsch A, Molday LL, Molday RS (2001) The cGMP-gated channel and related glutamic acid-rich proteins interact with peripherin-2 at the rim region of rod photoreceptor disc membranes. J Biol Chem 276(51):48009–48016

    PubMed  CAS  Google Scholar 

  48. Conley SM, Ding XQ, Naash MI (2010) RDS in cones does not interact with the beta subunit of the cyclic nucleotide gated channel. Adv Exp Med Biol 664:63–70. doi:10.1007/978-1-4419-1399-9_8

    Article  PubMed  CAS  Google Scholar 

  49. Edrington TC 5th, Yeagle PL, Gretzula CL, Boesze-Battaglia K (2007) Calcium-dependent association of calmodulin with the C-terminal domain of the tetraspanin protein peripherin/rds. Biochemistry 46(12):3862–3871

    Article  Google Scholar 

  50. Drummer HE, Wilson KA, Poumbourios P (2005) Determinants of CD81 dimerization and interaction with hepatitis C virus glycoprotein E2. Biochem Biophys Res Commun 328(1):251–257. doi:10.1016/j.bbrc.2004.12.160

    Article  PubMed  CAS  Google Scholar 

  51. Wrigley JD, Ahmed T, Nevett CL, Findlay JB (2000) Peripherin/rds influences membrane vesicle morphology. Implications for retinopathies. J Biol Chem 275(18):13191–13194

    Article  PubMed  CAS  Google Scholar 

  52. Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E (2002) Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 516(1–3):139–144. doi:S001457930202522X[pii]

    Article  PubMed  CAS  Google Scholar 

  53. Israels SJ, McMillan-Ward EM (2010) Palmitoylation supports the association of tetraspanin CD63 with CD9 and integrin alphaIIbbeta3 in activated platelets. Thromb Res 125(2):152–158. doi:10.1016/j.thromres.2009.07.005

    Article  PubMed  CAS  Google Scholar 

  54. Mustafi D, Palczewski K (2009) Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol 75(1):1–12. doi:10.1124/mol.108.051938

    Article  PubMed  CAS  Google Scholar 

  55. Ono M, Handa K, Withers DA, Hakomori S (2000) Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells. Biochem Biophys Res Commun 279(3):744–750. doi:10.1006/bbrc.2000.4030S0006291X00940300[pii]

    Article  PubMed  CAS  Google Scholar 

  56. Hakomori SSI (2002) Inaugural article: the glycosynapse. Proc Nat Acad Sci U S A 99(1):225–232. doi:10.1073/pnas.012540899012540899[pii]

    Article  CAS  Google Scholar 

  57. Kedzierski W, Bok D, Travis GH (1999) Transgenic analysis of rds/peripherin N-glycosylation: effect on dimerization, interaction with rom1, and rescue of the rds null phenotype. J Neurochem 72(1):430–438

    Article  PubMed  CAS  Google Scholar 

  58. Wrigley JD, Nevett CL, Findlay JB (2002) Topological analysis of peripherin/rds and abnormal glycosylation of the pathogenic Pro216–>Leu mutation. Biochem J 368(Pt 2):649–655

    Article  PubMed  CAS  Google Scholar 

  59. Bascom RA, Manara S, Collins L, Molday RS, Kalnins VI, McInnes RR (1992) Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies. Neuron 8(6):1171–1184

    Article  PubMed  CAS  Google Scholar 

  60. Moritz OL, Molday RS (1996) Molecular cloning, membrane topology, and localization of bovine rom-1 in rod and cone photoreceptor cells. Invest Ophthalmol Vis Sci 37(2):352–362

    PubMed  CAS  Google Scholar 

  61. Farjo R, Skaggs JS, Nagel BA, Quiambao AB, Nash ZA, Fliesler SJ, Naash MI (2006) Retention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors. J Cell Biol 173(1):59–68

    Article  PubMed  CAS  Google Scholar 

  62. Franco M, Muratori C, Corso S, Tenaglia E, Bertotti A, Capparuccia L, Trusolino L, Comoglio PM, Tamagnone L (2010) The tetraspanin CD151 is required for met-dependent signaling and tumor cell growth. J Biol Chem 285(50):38756–38764. doi:10.1074/jbc.M110.145417

    Article  PubMed  CAS  Google Scholar 

  63. Boesze-Battaglia K, Albert AD, Frye JS, Yeagle PL (1996) Differential membrane protein phosphorylation in bovine retinal rod outer segment disk membranes as a function of disk age. Biosci Rep 16(4):289–297

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Martin Hemler for his comments on the manuscript. This work was supported by grants from the National Institutes of Health [EY10609 (MIN), EY018656 (MIN), and EY018512 (SMC)], Core Grant for Vision Research EY12190, the Foundation Fighting Blindness (MIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muna I. Naash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conley, S.M., Stuck, M.W. & Naash, M.I. Structural and functional relationships between photoreceptor tetraspanins and other superfamily members. Cell. Mol. Life Sci. 69, 1035–1047 (2012). https://doi.org/10.1007/s00018-011-0736-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0736-0

Keywords

Navigation