Skip to main content
Log in

The dynamic nature of the bacterial cytoskeleton

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Three of the four well-established bacterial cytoskeletal systems—the MreB, MinCDE, and FtsZ systems—undergo a variety of short-range and long-range dynamic behaviors. These include the cellular reorganization of the cytoskeletal elements, in which the proteins redistribute from a predominantly helical pole-to-pole pattern into annular structures near midcell. Despite their apparent similarity, these dramatic redistributional events in the three systems are in large part independent of each other. In addition, some of the cytoskeletal structures undergo oscillatory behavior in which the helical elements move repetitively back-and-forth between the two ends of the cell. The details and mechanisms underlying these dynamic cellular events are just now being revealed by fluorescence microscopy of intact cells, fluorescence photobleaching recovery studies, single molecule tracking techniques, and in vitro studies of the purified proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shih Y-L, Rothfield LI (2006) The bacterial cytoskeleton. Microbiol Mol Biol Rev 70:729–754

    Article  PubMed  CAS  Google Scholar 

  2. Cabeen MT, Jacobs-Wagner C (2007) Skin and bones: the bacterial cytoskeleton, cell wall, and cell morphogenesis. J Cell Biol 179:381–387

    Article  PubMed  CAS  Google Scholar 

  3. Pichoff S, Lutkenhaus J (2007) Overview of cell shape: cytoskeletons shape bacterial cells. Curr Opin Microbiol 10:601–605

    Article  PubMed  CAS  Google Scholar 

  4. Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M Jr, Skarstad K (2007) Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 71:230–253

    Article  PubMed  CAS  Google Scholar 

  5. Osborn MJ, Rothfield L (2007) Cell shape determination in Escherichia coli. Curr Opin Microbiol 10:606–610

    Article  PubMed  CAS  Google Scholar 

  6. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  PubMed  CAS  Google Scholar 

  7. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  PubMed  CAS  Google Scholar 

  8. Young K (2003) Bacterial shape. Mol Microbiol 49:571–580

    Article  PubMed  CAS  Google Scholar 

  9. Kim SY, Gitai Z, Kinkhabwala A, Shapiro L, Moerner WE (2006) Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc Natl Acad Sci USA 103:10929–10934

    Article  PubMed  CAS  Google Scholar 

  10. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  PubMed  CAS  Google Scholar 

  11. Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6:885–890

    Article  PubMed  CAS  Google Scholar 

  12. Deich J, Judd EM, McAdams HH, Moerner WE (2004) Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc Natl Acad Sci USA 101:15921–15926

    Article  PubMed  CAS  Google Scholar 

  13. Elowitz MB, Surette MG, Wolf PE, Stock JB, Leibler S (1999) Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol 181:197–203

    PubMed  CAS  Google Scholar 

  14. Rothfield L, Taghbalout A, Shih Y-L (2005) Spatial control of bacterial division-site placement. Nat Rev Microbiol 31:959–968

    Article  Google Scholar 

  15. Shih Y-L, Le T, Rothfield L (2003) Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci USA 100:7865–7870

    Article  PubMed  CAS  Google Scholar 

  16. Barak I, Muchova K, Wilkinson AJ, O’Toole PJ, Pavlendova N (2008) Lipid spirals in Bacillus subtilis and their role in cell division. Mol Microbiol 68:1315–1327

    Article  PubMed  CAS  Google Scholar 

  17. Shih YL, Kawagishi I, Rothfield L (2005) The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation. Mol Microbiol 58:917–928

    Article  PubMed  CAS  Google Scholar 

  18. Hu Z, Gogol E, Lutkenhaus J (2002) Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc Natl Acad Sci USA 99:6761–6766

    Article  PubMed  CAS  Google Scholar 

  19. Suefuji K, Valluzzi R, RayChaudhuri D (2002) Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE. Proc Natl Acad Sci USA 99:16776–16781

    Article  PubMed  CAS  Google Scholar 

  20. Szeto T, Rowland S, Rothfield L, King GF (2002) Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proc Natl Acad Sci USA 99:15693–15698

    Article  PubMed  CAS  Google Scholar 

  21. Szeto TH, Rowland S, Habrukowich C, King GF (2003) The MinD membrane targeting sequence is a transplantable lipid-binding helix. J Biol Chem 279:40050–40056

    Article  Google Scholar 

  22. Hu Z, Lutkenhaus J (2003) A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targetting MinC to the septum. Mol Microbiol 47:345–355

    Article  PubMed  CAS  Google Scholar 

  23. Ma L, Rothfield L (2004) Positioning of the MinE binding site on the MinD surface suggests a plausible mechanism for activation of the Escherichia coli MinD ATPase during division site selection. Mol Microbiol 54:99–108

    Article  PubMed  CAS  Google Scholar 

  24. Raskin D, de Boer P (1999) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci USA 96:4971–4976

    Article  PubMed  CAS  Google Scholar 

  25. Rowland SL, Fu X, Sayed MA, Zhang Y, Cook WR, Rothfield LI (2000) Membrane redistribution of the Escherichia coli MinD protein induced by MinE. J Bacteriol 182:613–619

    Article  PubMed  CAS  Google Scholar 

  26. Drew D, Osborn M, Rothfield L (2005) A polymerization–depolymerization model that accurately generates the self-sustained oscillatory system involved in bacterial division site placement. Proc Natl Acad Sci USA 102:6114–6118

    Article  PubMed  CAS  Google Scholar 

  27. Meinhardt H, de Boer P (2001) Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of min proteins and the localization of the division site. Proc Natl Acad Sci USA 98:14202–14207

    Article  PubMed  CAS  Google Scholar 

  28. Huang KC, Meir Y, Wingreen NS (2003) Dynamic structures in Escherichia coli: spontaneous formation of MinE rings and MinD polar zones. Proc Natl Acad Sci USA 100:12724–12728

    Article  PubMed  CAS  Google Scholar 

  29. Kruse K (2002) A dynamic model for determining the middle of Escherichia coli. Biophys J 82:618–627

    Article  PubMed  CAS  Google Scholar 

  30. Pavin N, Paljetak HC, Krstic V (2006) Min-protein oscillations in Escherichia coli with spontaneous formation of two-stranded filaments in a three-dimensional stochastic reaction-diffusion model. Phys Rev E Stat Nonlin Soft Matter Phys 73:021904

    PubMed  Google Scholar 

  31. Howard M, Rutenberg AD (2003) Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys Rev Lett 90:128102

    Article  PubMed  Google Scholar 

  32. Loose M, Fischer-Friedrich E, Ries J, Kruse K, Schwille P (2008) Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–792

    Article  PubMed  CAS  Google Scholar 

  33. Wachi M, Doi M, Okada Y, Matsuhashi M (1989) New mre genes mreC and mreD, responsible for formation of the rod shape of Escherichia coli cell. J Bacteriol 171:6511–6516

    PubMed  CAS  Google Scholar 

  34. Doi M, Wachi M, Ishno F, Tomioka S, Ho M, Matsuhashi M (1988) Determination of the gene products of the mre region that functions in formation of the rod shape of Escherichia coli cells and of the sequence of the mreB gene. J Bacteriol 170:4619–4624

    PubMed  CAS  Google Scholar 

  35. Michie KA, Lowe J (2006) Dynamic filaments of the bacterial cytoskeleton. Annu Rev Biochem 75:467–492

    Article  PubMed  CAS  Google Scholar 

  36. Carballido-Lopez R (2006) The bacterial actin-like cytoskeleton. Microbiol Mol Biol Rev 70:888–909

    Article  PubMed  CAS  Google Scholar 

  37. Madabhushi R, Marians KJ (2009) Actin homolog MreB affects chromosome segregation by regulating topoisomerase IV in Escherichia coli. Mol Cell 33:171–180

    Article  PubMed  CAS  Google Scholar 

  38. Karczmarek A, MartÌnez-Arteaga R, Alexeeva S, Hansen F, Vicente M, Nanninga N, den Blaauwen T (2007) DNA and origin region segregation are not affected by the transition from rod to sphere after inhibition of Escherichia coli MreB by A22. Mol Microbiol 65:51–63

    Article  PubMed  CAS  Google Scholar 

  39. Kruse T, Gerdes K (2005) Bacterial DNA segregation by the actin-like MreB protein. Trends Cell Biol 15:343–345

    Article  PubMed  CAS  Google Scholar 

  40. Kruse T, Blagoev B, Lobner-Olesen A, Wachi M, Sasaki K, Iwai N, Mann M, Gerdes K (2006) Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli. Genes Dev 20:113–124

    Article  PubMed  CAS  Google Scholar 

  41. Defeu-Soufo HJ, Graumann PL (2005) Bacillus subtilis actin-like protein MreB influences the positioning of the replication machinery and requires membrane proteins MreC/D and other actin-like proteins for proper localization. BMC Cell Biol 6:10

    Article  PubMed  Google Scholar 

  42. Esue O, Cordero M, Wirtz D, Tseng Y (2005) The assembly of MreB, a prokaryotic homolog of actin. J Biol Chem 280:2628–2635

    Article  PubMed  CAS  Google Scholar 

  43. Esue E, Wirtz D, Tseng Y (2006) GTPase activity, structure and mechanical properties of filaments assembled from bacterial cytoskeleton protein MreB. J Bacteriol 188:968–976

    Article  PubMed  CAS  Google Scholar 

  44. Vats P, Rothfield L (2007) Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle. Proc Natl Acad Sci USA 104:17795–17800

    Article  PubMed  CAS  Google Scholar 

  45. Jones L, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical actin-like filaments in Bacillus subtilis. Cell 104:913–922

    Article  PubMed  CAS  Google Scholar 

  46. Carballido-Lopez R, Errington J (2003) The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev Cell 4:19–28

    Article  PubMed  CAS  Google Scholar 

  47. Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332

    Article  PubMed  CAS  Google Scholar 

  48. Gitai Z, Dye N, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci USA 101:8643–8648

    Article  PubMed  CAS  Google Scholar 

  49. Slovak PM, Wadhams GH, Armitage JP (2005) Localization of MreB in Rhodobacter sphaeroides under conditions causing changes in cell shape and membrane structure. J Bacteriol 187:54–64

    Article  PubMed  CAS  Google Scholar 

  50. Vats P, Shih Y, Rothfield L (2009) Assembly of the MreB-associated cytoskeletal ring of Escherichia coli. Mol Microbiol 72:170–182

    Article  PubMed  CAS  Google Scholar 

  51. Carballido-Lopez R, Formstone A, Ying L, Ehrlich S, Noirot P, Errington J (2006) Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. Dev Cell 11:399–409

    Article  PubMed  CAS  Google Scholar 

  52. Defeu-Soufo HJ, Graumann PL (2004) Dynamic movement of actin-like proteins within bacterial cells. EMBO Rep 5:789–794

    Article  PubMed  CAS  Google Scholar 

  53. Defeu-Soufo HJ, Graumann PL (2006) Dynamic localization and interaction with other Bacillus subtilis actin-like proteins are important for the function of MreB. Mol Microbiol 62:1340–1356

    Article  PubMed  CAS  Google Scholar 

  54. Srinivasan R, Mishra M, Murata-Hori M, Balasubramanian MK (2007) Filament formation of the Escherichia coli actin-related protein, MreB, in fission yeast. Curr Biol 17:266–272

    Article  PubMed  CAS  Google Scholar 

  55. Erickson H, Taylor D, Taylor K, Bramhill D (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci USA 93:519–523

    Article  PubMed  CAS  Google Scholar 

  56. Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164

    Article  PubMed  CAS  Google Scholar 

  57. Peters PC, Migocki MD, Thoni C, Harry EJ (2007) A new assembly pathway for the cytokinetic Z ring from a dynamic helical structure in vegetatively growing cells of Bacillus subtilis. Mol Microbiol 64:487–499

    Article  PubMed  CAS  Google Scholar 

  58. Michie KA, Monahan LG, Beech PL, Harry EJ (2006) Trapping of a spiral-like intermediate of the bacterial cytokinetic protein FtsZ. J Bacteriol 188:1680–1690

    Article  PubMed  CAS  Google Scholar 

  59. Ben-Yehuda S, Losick R (2002) Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109:257–266

    Article  PubMed  CAS  Google Scholar 

  60. Thanedar S, Margolin W (2004) FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr Biol 14:1167–1173

    Article  PubMed  CAS  Google Scholar 

  61. Anderson DE, Gueiros-Filho FJ, Erickson HP (2004) Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J Bacteriol 186:5775–5781

    Article  PubMed  CAS  Google Scholar 

  62. Stricker J, Maddox P, Salmon ED, Erickson HP (2002) Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci USA 99:3171–3175

    Article  PubMed  CAS  Google Scholar 

  63. Srinivasan R, Mishra M, Wu L, Yin Z, Balasubramanian MK (2008) The bacterial cell division protein FtsZ assembles into cytoplasmic rings in fission yeast. Genes Dev 22:1741–1746

    Article  PubMed  CAS  Google Scholar 

  64. Li Z, Trimble M, Brun Y, Jensen G (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26:4694–4708

    Article  PubMed  CAS  Google Scholar 

  65. Mingorance J, Tadros M, Vicente M, Gonzalez JM, Rivas G, Velez M (2005) Visualization of single Escherichia coli FtsZ filament dynamics with atomic force microscopy. J Biol Chem 280:20909–20914

    Article  PubMed  CAS  Google Scholar 

  66. Niu L, Yu J (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 95:2009–2016

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work from the authors’ laboratories was supported by grants GM R37-06032 (L.R.) and 1R01GM085301-01 (J.Y.) from the U.S. National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purva Vats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vats, P., Yu, J. & Rothfield, L. The dynamic nature of the bacterial cytoskeleton. Cell. Mol. Life Sci. 66, 3353–3362 (2009). https://doi.org/10.1007/s00018-009-0092-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0092-5

Keywords

Navigation