Skip to main content
Log in

Crystal structures of g-type lysozyme from Atlantic cod shed new light on substrate binding and the catalytic mechanism

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Crystal structures of Atlantic cod lysozyme have been solved with and without ligand bound in the active site to 1.7 and 1.9 Å resolution, respectively. The structures reveal the presence of NAG in the substrate binding sites at both sides of the catalytic Glu73, hence allowing the first crystallographic description of the goose-type (g-type) lysozyme E–G binding sites. In addition, two aspartic acid residues suggested to participate in catalysis (Asp101 and Asp90) were mutated to alanine. Muramidase activity data for two single mutants and one double mutant demonstrates that both residues are involved in catalysis, but Asp101 is the more critical of the two. The structures and activity data suggest that a water molecule is the nucleophile completing the catalytic reaction, and the roles of the aspartic acids are to ensure proper positioning of the catalytic water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839

    Article  PubMed  CAS  Google Scholar 

  2. Saurabh S, Sahoo PK (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39:223–239

    Article  CAS  Google Scholar 

  3. Irwin DM, Gong Z (2003) Molecular evolution of vertebrate goose-type lysozyme genes. J Mol Evol 56:234–242

    Article  PubMed  CAS  Google Scholar 

  4. Prager EM, Jollès P (1996) Animal lysozymes c and g: an overview. In: Jollès P (ed) Lysozymes: model enzymes in biochemistry and biology. Birkhäuser, Basel, pp 9–31

    Google Scholar 

  5. Jolles P, Jolles J (1984) What’s new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem 63:165–189

    Article  PubMed  CAS  Google Scholar 

  6. Grutter MG, Weaver LH, Matthews BW (1983) Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes? Nature 303:828–831

    Article  PubMed  CAS  Google Scholar 

  7. Weaver LH, Grutter MG, Matthews BW (1995) The refined structures of goose lysozyme and its complex with a bound trisaccharide show that the “goose-type” lysozymes lack a catalytic aspartate residue. J Mol Biol 245:54–68

    Article  PubMed  CAS  Google Scholar 

  8. Honda Y, Fukamizo T (1998) Substrate binding subsites of chitinase from barley seeds and lysozyme from goose egg white. Biochim Biophys Acta 1388:53–65

    PubMed  CAS  Google Scholar 

  9. Strynadka NC, James MN (1991) Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D. J Mol Biol 220:401–424

    Article  PubMed  CAS  Google Scholar 

  10. Song H, Inaka K, Maenaka K, Matsushima M (1994) Structural changes of active site cleft and different saccharide binding modes in human lysozyme co-crystallized with hexa-N-acetyl-chitohexaose at pH 4.0. J Mol Biol 244:522–540

    Article  PubMed  CAS  Google Scholar 

  11. Hirakawa H, Ochi A, Kawahara Y, Kawamura S, Torikata T, Kuhara S (2008) Catalytic reaction mechanism of goose egg-white lysozyme by molecular modelling of enzyme–substrate complex. J Biochem (Tokyo) 144:753–761

    CAS  Google Scholar 

  12. Canfield RE, McMurry S (1967) Purification and characterization of a lysozyme from goose egg white. Biochem Biophys Res Commun 26:38–42

    Article  PubMed  CAS  Google Scholar 

  13. Dianoux AC, Jolles P (1967) Study of a lysozyme poor in cystine and tryptophan: the lysozyme of goose egg white. Biochim Biophys Acta 133:472–479

    PubMed  CAS  Google Scholar 

  14. Hikima J, Minagawa S, Hirono I, Aoki T (2001) Molecular cloning, expression and evolution of the Japanese flounder goose-type lysozyme gene, and the lytic activity of its recombinant protein. Biochim Biophys Acta 1520:35–44

    PubMed  CAS  Google Scholar 

  15. Kyomuhendo P, Myrnes B, Nilsen IW (2007) A cold-active salmon goose-type lysozyme with high heat tolerance. Cell Mol Life Sci 64:2841–2847

    Article  PubMed  CAS  Google Scholar 

  16. Savan R, Aman A, Sakai M (2003) Molecular cloning of G type lysozyme cDNA in common carp (Cyprinus carpio L.). Fish Shellfish Immunol 15:263–268

    Article  PubMed  CAS  Google Scholar 

  17. Sun BJ, Wang GL, Xie HX, Gao Q, Nie P (2006) Gene structure of goose-type lysozyme in the mandarin fish Siniperca chuatsi with analysis on the lytic activity of its recombinant in Escherichia coli. Aquaculture 252:106–113

    Article  CAS  Google Scholar 

  18. Yin ZX, He JG, Deng WX, Chan SM (2003) Molecular cloning, expression of orange-spotted grouper goose-type lysozyme cDNA, and lytic activity of its recombinant protein. Dis Aquat Organ 55:117–123

    Article  PubMed  CAS  Google Scholar 

  19. Zheng W, Tian C, Chen X (2007) Molecular characterization of goose-type lysozyme homologue of large yellow croaker and its involvement in immune response induced by trivalent bacterial vaccine as an acute-phase protein. Immunol Lett 113:107–116

    Article  PubMed  CAS  Google Scholar 

  20. Larsen AN, Solstad T, Svineng G, Seppola M, Jorgensen TØ (2009) Molecular characterisation of a goose-type lysozyme gene in Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol 26:122–132

    Article  PubMed  CAS  Google Scholar 

  21. Karlsen S, Hough E, Rao ZH, Isaacs NW (1996) Structure of a bulgecin-inhibited g-type lysozyme from the egg white of the Australian black swan. A comparison of the binding of bulgecin to three muramidases. Acta Crystallogr D Biol Crystallogr 52:105–114

    Article  PubMed  CAS  Google Scholar 

  22. Rao Z, Esnouf R, Isaacs N, Stuart D (1995) A strategy for rapid and effective refinement applied to black swan lysozyme. Acta Crystallogr D Biol Crystallogr 51:331–336

    Article  PubMed  CAS  Google Scholar 

  23. Kawamura S, Ohno K, Ohkuma M, Chijiiwa Y, Torikata T (2006) Experimental verification of the crucial roles of Glu73 in the catalytic activity and structural stability of goose type lysozyme. J Biochem (Tokyo) 140:75–85

    CAS  Google Scholar 

  24. Kabsch W (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 26:795–800

    Article  CAS  Google Scholar 

  25. Collaborative Computational Project, N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  26. Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025

    Article  CAS  Google Scholar 

  27. Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6:458–463

    Article  PubMed  CAS  Google Scholar 

  28. Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A Found Crystallogr 47:110–119

    Article  Google Scholar 

  29. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  PubMed  CAS  Google Scholar 

  30. Holm L, Park J (2000) DaliLite workbench for protein structure comparison. Bioinformatics 16:566–567

    Article  PubMed  CAS  Google Scholar 

  31. Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the nonlinear Poisson–Boltzmann equation: multiple dielectric constants and multivalent ions. J Phys Chem B 105:6507–6514

    Article  CAS  Google Scholar 

  32. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  PubMed  CAS  Google Scholar 

  33. Mcdonald IK, Thornton JM (1994) Satisfying hydrogen-bonding potential in proteins. J Mol Biol 238:777–793

    Article  PubMed  CAS  Google Scholar 

  34. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  PubMed  CAS  Google Scholar 

  35. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8:127–134

    Article  PubMed  CAS  Google Scholar 

  36. Fukamizo T, Torikata T, Nagayama T, Minematsu T, Hayashi K (1983) Enzymatic activity of avian egg-white lysozymes. J Biochem (Tokyo) 94:115–122

    CAS  Google Scholar 

  37. Maenaka K, Matsushima M, Song H, Sunada F, Watanabe K, Kumagai I (1995) Dissection of protein–carbohydrate interactions in mutant hen egg-white lysozyme complexes and their hydrolytic activity. J Mol Biol 247:281–293

    Article  PubMed  CAS  Google Scholar 

  38. Kuroki R, Weaver LH, Matthews BW (1999) Structural basis of the conversion of T4 lysozyme into a transglycosidase by reengineering the active site. Proc Natl Acad Sci USA 96:8949–8954

    Article  PubMed  CAS  Google Scholar 

  39. Vocadlo DJ, Davies GJ, Laine R, Withers SG (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412:835–838

    Article  PubMed  CAS  Google Scholar 

  40. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  PubMed  CAS  Google Scholar 

  41. Smalas AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57

    Article  PubMed  CAS  Google Scholar 

  42. Kawamura S, Ohkuma M, Chijiiwa Y, Kohno D, Nakagawa H, Hirakawa H, Kuhara S, Torikata T (2008) Role of disulfide bonds in goose-type lysozyme. FEBS J 275:2818–2830

    Article  PubMed  CAS  Google Scholar 

  43. Pooart J, Torikata T, Araki T (2005) Enzymatic properties of rhea lysozyme. Biosci Biotechnol Biochem 69:103–112

    Article  PubMed  CAS  Google Scholar 

  44. Muraki M, Morikawa M, Jigami Y, Tanaka H (1988) Engineering of human lysozyme as a polyelectrolyte by the alteration of molecular surface charge. Protein Eng 2:49–54

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Research Council of Norway (NRC), project number 158952 and the National Functional Genomics Program (FUGE). Provision of beamtime at the Macromolecular Crystallography Beamlines (BL14) of Berliner Elektronenspeicherring (BESSY) and the Swiss-Norwegian Beamlines (SNBL) at European Synchrotron Radiation Facility (ESRF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronny Helland or Atle N. Larsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helland, R., Larsen, R.L., Finstad, S. et al. Crystal structures of g-type lysozyme from Atlantic cod shed new light on substrate binding and the catalytic mechanism. Cell. Mol. Life Sci. 66, 2585–2598 (2009). https://doi.org/10.1007/s00018-009-0063-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0063-x

Keywords

Navigation