Skip to main content
Log in

Arsenite transport in plants

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Arsenic is a metalloid which is toxic to living organisms. Natural occurrence of arsenic and human activities have led to widespread contamination in many areas of the world, exposing a large section of the human population to potential arsenic poisoning. Arsenic intake can occur through consumption of contaminated crops and it is therefore important to understand the mechanisms of transport, metabolism and tolerance that plants display in response to arsenic. Plants are mainly exposed to the inorganic forms of arsenic, arsenate and arsenite. Recently, significant progress has been made in the identification and characterisation of proteins responsible for movement of arsenite into and within plants. Aquaporins of the NIP (nodulin26-like intrinsic protein) subfamily were shown to transport arsenite in planta and in heterologous systems. In this review, we will evaluate the implications of these new findings and assess how this may help in developing safer and more tolerant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  2. Brewstar MD (1994) Removing arsenic from contaminated water. Water Environ Technol 4:54–57

    Google Scholar 

  3. Chatterjee A (1994) Ground water arsenic contamination in residential area and surroundings of P.N.Mitra Lane, Behala, Calcutta, due to industrial effluent discharge. PhD thesis, Jadavpur University, Calcutta, India

  4. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non resistant plant species. New Phytol 154:429–432

    Article  Google Scholar 

  5. Yarnell A (1983) Salvarsan. http://pubs.acs.org/cen/coverstory/83/8325/8325 salvarsan.html. Accessed Mar 2006

  6. Van den Enden E (1999) Arsenic poisoning. http://www.itg.be/evde/ Teksten/sylabus/49_Arsenicism.doc Accessed Apr 2006

  7. National Academy of Sciences (1977) Arsenic: medical and biological effects of environmental pollutants. National Academy Press, USA

    Google Scholar 

  8. Orme S, Kegley S (2006) PAN Pesticides Database. http://ww.pesticideinfo.org Accessed May 2006

  9. Ishiguro S (1992) Industries using arsenic and arsenic compounds. Appl Organomet Chem 6:323–331

    Article  CAS  Google Scholar 

  10. IARC (1987) Arsenic and arsenic compounds (Group 1). In: IARC monographs on the evaluation of the carcinogenic risks to humans. Supplement 7, date accessed: 6 Feb 2003. Available from http://193.51.164.11/htdocs/monographs/ suppl7/arsenic.html>

  11. Naidu R, Smith E, Wens G, Bhattacharya P, Nadebaum P (2006) Managing arsenic in the environment from soil to human. CSIRO Publishing, pp 327–350

  12. National Research Council (2001) Arsenic in drinking water update. National Academy Press, USA

    Google Scholar 

  13. IPCS (2001) Environmental health criteria on arsenic and arsenic compounds. Environmental Health Criteria Series, No. 224. Arsenic and arsenic compounds, second, WHO, Geneva, p 521

  14. Gochfeld M (1997) Factors influencing susceptibility to metals. Environ Health Perspect 105(4):817–833

    Article  PubMed  CAS  Google Scholar 

  15. Young A (2000) Arsenic. http://www.protfolio.mvm.ac.uk/studentweb/session2/ group12/arsenic.html

  16. Chou W, Jie C, Kenedy A, Jones RJ, Trush MA, Dang CV (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukaemia cells. Proc Natl Acad Press USA 101:4578–4583

    Article  CAS  Google Scholar 

  17. Mead MN (2005) Arsenic: in search of an antidote to a global poison. Environ Health Perspect 113:A379–A386

    Google Scholar 

  18. Tamaki S, Frankenberger WT (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110

    PubMed  CAS  Google Scholar 

  19. Carbonell-Barrachina AA, Aarabi MA, De Laune RD, Gambrell RP, Patrick WHJ (1998) The influence of arsenic chemical form and concentration on spartina patens and spartina alterniflora growth and tissue arsenic concentration. Plant Soil 198:33–43

    Article  CAS  Google Scholar 

  20. Carbonell-Barrachina AA, Burlo F, Lopez E, Martinez-Sanchez F (1999) Arsenic toxicity and accumulation in radish as affected by arsenic chemical speciation. J Environ Sci Health Part B–Pestic Food Contam Agric Wastes 34:661–679

    CAS  Google Scholar 

  21. Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian HV (2000) Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207

    Article  PubMed  CAS  Google Scholar 

  22. Ontario Ministry of the Environment (2001) Arsenic in the environment. http://www.ene.gov.on.ca/cons/3792e.htm Accessed Feb 2006

  23. Nordstrom DK (2002) Public health-Worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    Article  PubMed  CAS  Google Scholar 

  24. Fazal MA, Kawachi T, Ichio E (2001) Validity of the latest research findings on causes of groundwater arsenic contamination in Bangladesh. Water Int 26:380–389

    Article  CAS  Google Scholar 

  25. Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397

    Article  PubMed  CAS  Google Scholar 

  26. O’Neill P (1995) Arsenic. In: Alloway BJ (ed) Heavy metals in soils. Blackie, London, pp 105–121

  27. Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540

    Article  PubMed  CAS  Google Scholar 

  28. Xu XY, McGrath SP, Meharg A, Zhao FJ (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  PubMed  CAS  Google Scholar 

  29. Zavala YJ, Duxbury JM (2008) Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environ Sci Technol 42:3856–3860

    Article  PubMed  CAS  Google Scholar 

  30. Tripathi R, Srivastava S, Mishra S, Singh N, Tuli R, Gupta D, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotech 25(4):158–165

    Article  CAS  Google Scholar 

  31. Rosenberg H, Gerdes G, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131(2):505–511

    PubMed  CAS  Google Scholar 

  32. Willsky G, Malamy M (1980) Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144(1):356–365

    PubMed  CAS  Google Scholar 

  33. Willsky G, Malamy M (1980) Effect of arsenate on inorganic phosphate transport in Escherichia coli. J Bacteriol 144(1):366–374

    PubMed  CAS  Google Scholar 

  34. Bhattacharjee H, Rosen BP (2007) Arsenic metabolism in prokaryotic and eukaryotic microbes in: molecular microbiology of heavy metals. Springer, Heidelberg

    Google Scholar 

  35. Lin YF, Walmsley A, Rosen B (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci USA 103(42):15617–15622

    Article  PubMed  CAS  Google Scholar 

  36. Rosen B (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  PubMed  CAS  Google Scholar 

  37. Yang H, Cheng J, Finan T, Rosen B, Bhattacharjee H (2005) Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187(20):6991–6997

    Article  PubMed  CAS  Google Scholar 

  38. Qin J, Rosen B, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 103(7):2075–2080

    Article  PubMed  CAS  Google Scholar 

  39. Wysocki R, Chéry C, Wawrzycka D, Hulle VM, Cornelis R, Thevelein J, Tamás M (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40(6):1391–1401

    Article  PubMed  CAS  Google Scholar 

  40. Liu Z, Boles E, Rosen B (2004) Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J Biol Chem 279(17):17312–17318

    Article  PubMed  CAS  Google Scholar 

  41. Liu Z, Sanchez M, Jiang X, Boles Landfear S, Rosen B (2006) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351(2):424–430

    Article  PubMed  CAS  Google Scholar 

  42. Ghosh M, Shen J, Rosen BP (1999) Pathways of AsIII detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:5001–5006

    Article  PubMed  CAS  Google Scholar 

  43. Liu Z, Shen JM, Carbrey J, Mukhopadhyay R, Agre P, Rosen B (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA 99(9):6053–6058

    Article  PubMed  CAS  Google Scholar 

  44. Liu Z, Styblo M, Rosen B (2006) Methylarsonous acid transport by aquaglyceroporins. Environ Health Perspect 114(4):527–531

    Article  PubMed  CAS  Google Scholar 

  45. Liu Z, Carbrey J, Agre P, Rosen B (2004) Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun 316(4):1178–1185

    Article  PubMed  CAS  Google Scholar 

  46. Liu J, Chen H, Miller D, Saavedra J, Keefer L, Johnson D, Klaassen C, Waalkes P (2001) Overexpression of Glutathione S-Transferase II and multidrug resistance transport proteins is associated with acquired tolerance to inorganic arsenic. Mol Pharmacol 60:302–309

    PubMed  CAS  Google Scholar 

  47. Kojima C, Qu W, Waalkes M, Himeno S, Sakurai T (2006) Chronic exposure to methylated arsenicals stimulates arsenic excretion pathways and induces arsenic tolerance in rat liver cells. Toxicol Sci 91(1):70–81

    Article  PubMed  CAS  Google Scholar 

  48. Liu J, Liu Y, Powell DA, Waalkesa MP, Klaassen CD (2002) Multidrug-resistance mdr1a/1b double knockout mice are more sensitive than wild type mice to acute arsenic toxicity, with higher arsenic accumulation in tissues. Toxicol 170(1–2):55–62

    Article  CAS  Google Scholar 

  49. Leslie ME, Haimeur A, Waalkes M (2004) Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). J Biol Chem 279(31):32700–32708

    Article  PubMed  CAS  Google Scholar 

  50. Shin H, Shin HS, Gary RD, Maria JH (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  PubMed  CAS  Google Scholar 

  51. Raab A, Williams PN, Meharg AA, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  52. Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  PubMed  CAS  Google Scholar 

  53. Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase, ACR2. Proc Natl Acad Sci USA 103:5413–5418

    Article  PubMed  CAS  Google Scholar 

  54. Bleeker PM, Hakvoort HW, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    Article  PubMed  CAS  Google Scholar 

  55. Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141(4):1544–1554

    Article  PubMed  CAS  Google Scholar 

  56. Duan GL, Zhou Y, Tong YP, Mukhopadhyay R, Rosen BP, Zhu YG (2007) A CDC25 homologue from rice functions as an arsenate reductase. New Phytol 174(2):311–321

    Article  PubMed  CAS  Google Scholar 

  57. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol doi: 10.1111/j.1469-8137.2008.02716.x

  58. Raab A, Feldmann J, Meharg AA (2004) The Nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134(3):1113–1122

    Article  PubMed  CAS  Google Scholar 

  59. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    Article  PubMed  CAS  Google Scholar 

  60. Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  CAS  Google Scholar 

  61. Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40:5010–5014

    Article  PubMed  CAS  Google Scholar 

  62. Caille N, Zhao FJ, McGrath SP (2005) Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the non hyperaccumulator Pteris tremula. New Phytol 165:755–761

    Article  PubMed  CAS  Google Scholar 

  63. Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    Article  PubMed  CAS  Google Scholar 

  64. Ma JF, Yamaji N, Mitani N, Xiao XY, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105(29):9931–9935

    Article  PubMed  CAS  Google Scholar 

  65. Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and co-ordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    Article  PubMed  CAS  Google Scholar 

  66. Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed  CAS  Google Scholar 

  67. Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    Article  CAS  Google Scholar 

  68. Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochem Biophys Acta-Biomem 1758:1165–1175

    Article  CAS  Google Scholar 

  69. Takano J, Wada M, Ludewig U, Schaaf G, Von WN, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  Google Scholar 

  70. Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara F (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875

    Article  PubMed  CAS  Google Scholar 

  71. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  72. Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bidirectional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26

    Article  PubMed  CAS  Google Scholar 

  73. Kamiya T, Tanaka M, Mitani N, Ma FJ, Maeshima M, Fujiwara T (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284(4):2114–2120

    Article  PubMed  CAS  Google Scholar 

  74. Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  PubMed  CAS  Google Scholar 

  75. Rosen BP (2002) Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A 133:689–693

    Article  Google Scholar 

  76. Wysocki R, Bobrowicz P, Ulaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272:30061–30066

    Article  PubMed  CAS  Google Scholar 

  77. Salt D, Banks JA, Indriolo E (2007) Expression of putative arsenite effluxers in Pteris vittata. Proc Bot Soc Am USA Number: P05023 Abstract ID: 2093

  78. Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyper accumulating fern. Environ Sci Technol 40:5010–5014

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans J. M. Maathuis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, W., Isayenkov, S.V., Zhao, FJ. et al. Arsenite transport in plants. Cell. Mol. Life Sci. 66, 2329–2339 (2009). https://doi.org/10.1007/s00018-009-0021-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0021-7

Keywords

Navigation