Skip to main content

Advertisement

Log in

The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Information about the family of protein arginine methyltransferases (PRMTs) has been growing rapidly over the last few years and the emerging role of arginine methylation involved in cellular processes like signaling, RNA processing, gene transcription, and cellular transport function has been investigated. To date, 11 PRMTs gene transcripts have been identified in humans. Almost all PRMTs have been shown to have enzymatic activity and to catalyze arginine methylation. This review will summarize the overall function of human PRMTs and include novel highlights on each family member.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269

    PubMed  CAS  Google Scholar 

  2. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    PubMed  CAS  Google Scholar 

  3. Lee DJ, Teyssier C, Strahl BD, Stallcup MR (2005) Role of methylation in regulation of transcription. Endocr Rev 26:147–170

    PubMed  CAS  Google Scholar 

  4. Bedford MT (2007) Arginine methylation at a glance. J Cell Sci 120:4243–4246

    PubMed  CAS  Google Scholar 

  5. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13

    PubMed  CAS  Google Scholar 

  6. Lake AN, Bedford MT (2007) Protein methylation and DNA repair. Mutat Res 618:91–101

    PubMed  CAS  Google Scholar 

  7. Smith BC, Denu JM (2009) Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta 1789:45–57

    PubMed  CAS  Google Scholar 

  8. Gosh SK, Paik WK, Kim S (1988) Purification and molecular identification of two protein methylases I from calf brain. Myelin basic protein- and histone-specific enzyme. J Biol Chem 263:19024–19033

    Google Scholar 

  9. Liu Q, Dreyfuss G (1995) In vivo and in vitro arginine methylation of RNA-binding proteins. Mol Cell Biol 155:2800–2808

    Google Scholar 

  10. Paik WK, Kim S (1967) Enzymatic methylation of protein fractions from calf thymus nuclei. Biochem Biophys Res Commun 29:14–20

    PubMed  CAS  Google Scholar 

  11. Paik WK, Kim S (1968) Protein methylase I. Purification and properties of the enzyme. J Biol Chem 243:2108–2114

    PubMed  CAS  Google Scholar 

  12. Rawal N, Rajpurohit R, Paik WK, Kim S (1994) Purification and characterization of S-adenosylmethionine-protein-arginine N-methyltransferase from rat liver. Biochem J 300:483–489

    PubMed  CAS  Google Scholar 

  13. Abramovich C, Yakobson B, Chebath J, Revel M (1997) A protein–arginine methyltransferase binds to the intracytoplasmatic domain of the IFNAR1 chain in the type I interferon receptor. EMBO J 16:260–266

    PubMed  CAS  Google Scholar 

  14. Henry MF, Silver PA (1996) A novel methyltransferase (Hmt1p) modifies poly(A) + -RNA-binding proteins. Mol Cell Biol 16:3668–3678

    PubMed  CAS  Google Scholar 

  15. Lin WJ, Gary JD, Yang MC, Clarke S, Herschmann HR (1996) The mammalian intermediate-early TIS21 protein and the leukaemia-associated BTG1 protein interact with a protein–arginine N-methyltransferase. J Biol Chem 271:15034–15044

    PubMed  CAS  Google Scholar 

  16. Pal S, Sif S (2007) Interplay between chromatin remodelers and protein arginine methylatransferases. J Cell Physiol 213:306–315

    PubMed  CAS  Google Scholar 

  17. Krause CD, Yang Z-H, Kim Y-S, Lee J-H, Cook JR, Pestka S (2007) Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutical potential. Pharmacol Ther 113:50–87

    PubMed  CAS  Google Scholar 

  18. Paik WK, Paik DC, Kim S (2007) Historical review: the field of protein methylation. Trends Biochem Sci 32:146–152

    PubMed  CAS  Google Scholar 

  19. Boulanger MC, Miranda TB, Clarke S, Di Fruscio M, Suter B, Lasko P, Richard S (2004) Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4. Biochem J 379:283–289

    PubMed  CAS  Google Scholar 

  20. Hung CM, Li C (2004) Identification and phylogenetic analyses of the protein arginine methyltransferase gene family in fish and ascidians. Gene 340:179–187

    PubMed  CAS  Google Scholar 

  21. Niewmierzycka A, Clarke S (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274:814–824

    PubMed  CAS  Google Scholar 

  22. Trojer P, Dangl M, Bauer I, Graessle S, Loidl P, Brosch G (2004) Histone methyltransferases in Aspergillus nidulans: evidence for a novel enzyme with a unique substrate specificity. Biochemisty 43:10834–10843

    CAS  Google Scholar 

  23. Bedford MT, Richard S (2005) Arginine methylation: an emerging regulator of protein function. Mol Cell 18:263–272

    PubMed  CAS  Google Scholar 

  24. Gary JD, Clarke S (1998) RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol 61:65–131

    PubMed  CAS  Google Scholar 

  25. Bachand F (2007) Protein arginine methyltransferases: from unicellular eukaryotes to humans. Eukaryot Cell 6:889–898

    PubMed  CAS  Google Scholar 

  26. Pahlich S, Zakaryan RP, Gehling H (2006) Protein arginine methylation: cellular functions and methods of analysis. Biochim Biophys Acta 1764:1890–1903

    PubMed  CAS  Google Scholar 

  27. Zobel-Thropp P, Gary JD, Clarke S (1998) δ-N-Methylarginine is a novel posttranslational modification of arginine residues in yeast proteins. J Biol Chem 273:29283–29286

    PubMed  CAS  Google Scholar 

  28. Chern MK, Chang KN, Liu LF, Tam TC, Liu YC, Liang YL, Tam MF (2002) Yeast ribosomal protein L12 is a substrate of protein–arginine methyltransferase 2. J Biol Chem 277:15345–15353

    PubMed  CAS  Google Scholar 

  29. Aletta JM, Hu JC (2008) Protein arginine methylation in health and disease. Biotechnol Annu Rev 14:203–224

    PubMed  CAS  Google Scholar 

  30. Bhaumik SR, Smith E, Shilatifard A (2007) Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 14:1008–1016

    PubMed  CAS  Google Scholar 

  31. Anand R, Marmorstein R (2007) Structure and mechanism of lysine specific demethylase enzymes. J Biol Chem 282:35425–35429

    PubMed  CAS  Google Scholar 

  32. Chang B, Chen Y, Zhao Y, Bruick RK (2007) JMJD6 is a histone arginine demethylase. Science 318:444–447

    PubMed  CAS  Google Scholar 

  33. Forneris F, Binda C, Battaglioli E, Mattevi A (2008) LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Trends Biochem Sci 33:181–189

    PubMed  CAS  Google Scholar 

  34. Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8:307–318

    PubMed  CAS  Google Scholar 

  35. Tang J, Gary JD, Clarke S, Herschman HR (1998) PRMT3. a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J Biol Chem 273:16935–16945

    PubMed  CAS  Google Scholar 

  36. Weiss VH, McBride AE, Soriano MA, Filman DJ, Silver PA, Hogle JM (2000) The structure and oligomerization of the yeast arginine methyltransferase. Nat Struct Biol 7:1165–1171

    PubMed  CAS  Google Scholar 

  37. Zhang X, Zhou L, Cheng X (2000) Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J 19:3509–3519

    PubMed  CAS  Google Scholar 

  38. Rho J, Choi S, Seong YM, Cho W-K, Kim SH, Im D-S (2001) PRMT5, which forms distinct homo-oligomers, is a member of the protein—arginine methyltransferase family. J Biol Chem 276:11393–11401

    PubMed  CAS  Google Scholar 

  39. Teyssier C, Chen D, Stallcup MR (2002) Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function. J Biol Chem 277:46066–46072

    PubMed  CAS  Google Scholar 

  40. Zhang X, Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11:509–520

    PubMed  CAS  Google Scholar 

  41. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstruction phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  42. Iwasaki H, Yada T (2007) Protein arginine methylation regulates insulin signaling in L6 skeletal muscle cells. Biochem Biophys Res Commun 364:1015–1021

    PubMed  CAS  Google Scholar 

  43. Scorila A, Black MH, Talieri M, Diamandis EP (2000) Genomic organization, physical mapping, and expression analysis of the human protein arginine methyltransferase 1 gene. Biochem Biophys Res Commun 278:349–359

    Google Scholar 

  44. Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, Zhang Y (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293:853–857

    PubMed  CAS  Google Scholar 

  45. Scott HS, Antonarakis SE, Lalioti MD, Rossier C, Silver PA, Henry MF (1998) Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2). Genomics 48:330–340

    PubMed  CAS  Google Scholar 

  46. Gary JD, Lin WJ, Yang MC, Herschman HR, Clarke S (1996) The predominant protein—arginine methyltransferase from Saccharomyces cerevisiae. J Biol Chem 271:12585–12594

    PubMed  CAS  Google Scholar 

  47. Katsanis N, Yaspo ML, Fisher EM (1997) Identification and mapping of a novel human gene, HRMT1L1, homologous to the rat protein arginine N-methyltransferase 1 (PRMT1) gene. Mamm Genome 8:526–529

    PubMed  CAS  Google Scholar 

  48. Tang J, Frankel A, Cook RJ, Kim S, Paik WK, Williams KR, Clarke S, Herschman HR (2000) PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J Biol Chem 275:7723–7730

    PubMed  CAS  Google Scholar 

  49. Goulet I, Gauvin G, Boisvenue S, Côté J (2007) Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J Biol Chem 282:33009–33021

    PubMed  CAS  Google Scholar 

  50. Kwak YT, Guo J, Prajapati S, Park KJ, Surabhi RM, Miller B, Gehrig P, Gaynor R (2003) Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol Cell 11:1055–1066

    PubMed  CAS  Google Scholar 

  51. Adams MM, Wang B, Xia Z, Morales JC, Lu X, Donehower LA, Bochar DA, Elledge SJ, Carpenter PB (2005) 53BP1 oligomerization is independent of its methylation by PRMT1. Cell Cycle 4:1854–1861

    PubMed  CAS  Google Scholar 

  52. Boisvert FM, Déry U, Masson JY, Richard S (2005) Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes Dev 19:671–676

    PubMed  CAS  Google Scholar 

  53. Smith JJ, Rücknagel KP, Schierhorn A, Tang J, Nemeth A, Linder M, Herschman HR, Wahle E (1999) Unusual sites of arginine methylation in Poly (A)-binding protein II and in vitro methylation by protein arginine methyltransferases PRMT1 and PRMT3. J Biol Chem 274:13229–13234

    PubMed  CAS  Google Scholar 

  54. Bedford MT, Frankel A, Yaffe MB, Clarke S, Leder P, Richard S (2000) Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J Biol Chem 275:16030–16036

    PubMed  CAS  Google Scholar 

  55. Le Romancer M, Treilleux I, Leconte N, Robin-Lespinasse Y, Sentis S, Bouchekioua-Bouzaghou K, Goddard S, Gobert-Gosse S, Corbo L (2008) Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol Cell 31:212–221

    PubMed  CAS  Google Scholar 

  56. Weber S, Maass F, Schuemann M, Krause E, Suske G, Bauer UM (2009) PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling. Genes Dev 23:118–132

    PubMed  CAS  Google Scholar 

  57. Kleinschmidt MA, Streubel G, Samans B, Krause M, Bauer U-M (2008) The protein arginine methylatransferases CARM1 and PRMT1 cooperate in gene regulation. Nucleic Acids Res 36:3202–3213

    PubMed  CAS  Google Scholar 

  58. Berthet C, Guéhenneux F, Revol V, Samarut C, Lukaszewicz A, Dehay C, Dumontet C, Magaud JP, Rouault JP (2002) Interaction of PRMT1 with BTG/TOB proteins in cell signalling: molecular analysis and functional aspects. Genes Cells 7:29–39

    PubMed  CAS  Google Scholar 

  59. Robin-Lespinasse Y, Sentis S, Kolytcheff C, Rostan MC, Corbo L, Le Romancer M (2007) CAF1, a new regulator of PRMT1-dependent arginine methylation. J Cell Sci 120:638–647

    PubMed  CAS  Google Scholar 

  60. Tang J, Kao PN, Herschman HR (2000) Protein—arginine methyltransferase I, the predominant protein—arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem 275:19866–19876

    PubMed  CAS  Google Scholar 

  61. Meyer R, Wolf SS, Obendorf M (2007) PRMT2, a member of the protein arginine methyltransferase family, is a coactivator of the androgen receptor. J Steroid Biochem Mol Biol 107:1–14

    PubMed  CAS  Google Scholar 

  62. Kzhyshkowska J, Schütt H, Liss M, Kremmer E, Stauber R, Wolf H, Dobner T (2001) Heterogeneous nuclear ribonucleoprotein E1B-AP5 is methylated in its Arg-Gly-Gly (RGG) box and interacts with human arginine methyltransferase HRMT1L1. Biochem J 358:305–314

    PubMed  CAS  Google Scholar 

  63. Qi C, Chang J, Zhu Y, Yeldandi AV, Rao SM, Zhu YJ (2002) Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor alpha. J Biol Chem 277:28624–28630

    PubMed  CAS  Google Scholar 

  64. Frankel A, Clarke S (2000) PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Conferral of substrate specificity by a zinc-finger domain. J Biol Chem 275:32974–32982

    PubMed  CAS  Google Scholar 

  65. Bachand F, Silver PA (2004) PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits. EMBO J 23:2641–2650

    PubMed  CAS  Google Scholar 

  66. Singh V, Miranda TB, Jiang W, Frankel A, Roemer ME, Robb VA, Gutmann DH, Herschman HR, Clarke S, Newsham IF (2004) DAL-1/4.1B tumor suppressor interacts with protein arginine N-methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates in vitro and in vivo. Oncogene 23:7761–7771

    PubMed  CAS  Google Scholar 

  67. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR (1999) Regulation of transcription by a protein methyltransferase. Science 284:2174–2177

    PubMed  CAS  Google Scholar 

  68. Stallcup MR, Chen D, Koh SS, Ma H, Lee YH, Li H, Schurter BT, Aswad DW (2000) Co-operation between protein-acetylating and protein-methylating co-activators in transcriptional activation. Biochem Soc Trans 28:415–418

    PubMed  CAS  Google Scholar 

  69. Koh SS, Chen D, Lee YH, Stallcup MR (2001) Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem 276:1089–1098

    PubMed  CAS  Google Scholar 

  70. Chen D, Huang S-M, Stallcup MR (2000) Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem 275:40810–40816

    PubMed  CAS  Google Scholar 

  71. Schurter BT, Koh SS, Chen D, Bunick GJ, Harp JM, Hanson BL, Henschen-Edman A, Mackay DR, Stallcup MR, Aswad DW (2001) Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40:5747–5756

    PubMed  CAS  Google Scholar 

  72. Fujiwara T, Mori Y, Chu DL, Koyama Y, Miyata S, Tanaka H, Yachi K, Kubo T, Yoshikawa H, Tohyama M (2006) CARM1 regulates proliferation of PC12 cells by methylating HuD. Mol Cell Biol 26:2273–2285

    PubMed  CAS  Google Scholar 

  73. Li H, Park S, Kilburn B, Jelinek MA, Henschen-Edman A, Aswad DW, Stallcup MR, Laird-Offringa IA (2002) Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. J Biol Chem 277:44623–44630

    PubMed  CAS  Google Scholar 

  74. Cheng D, Côté J, Shaaban S, Bedford MT (2007) The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol Cell 25:71–83

    PubMed  Google Scholar 

  75. El Messaoudi S, Fabbrizio E, Rodriguez C, Chuchana P, Fauquier L, Cheng D, Theillet C, Vandel L, Bedford MT, Sardet C (2006) Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene. Proc Natl Acad Sci USA 103:13351–13356

    PubMed  CAS  Google Scholar 

  76. Frietze S, Lupien M, Silver PA, Brown M (2008) CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res 68:301–306

    PubMed  CAS  Google Scholar 

  77. Feng Q, Yi P, Wong J, O’Malley BW (2006) Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol Cell Biol 26:7846–7857

    PubMed  CAS  Google Scholar 

  78. Higashimoto K, Kuhn P, Desai D, Cheng X, Xu W (2007) Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc Natl Acad Sci USA 104:12318–12323

    PubMed  CAS  Google Scholar 

  79. Chen SL, Loffler KA, Chen D, Stallcup MR, Muscat G (2002) The coactivator-associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor-2. J Biol Chem 277:4324–4333

    PubMed  CAS  Google Scholar 

  80. Yadav N, Lee J, Kim J, Shen J, Hu MC, Aldaz CM, Bedford MT (2003) Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc Natl Acad Sci USA 100:6464–6468

    PubMed  CAS  Google Scholar 

  81. Kim J, Lee J, Yadav N, Wu Q, Carter C, Richard S, Richie E, Bedford MT (2004) Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP-regulated phosphoprotein and deregulated early T cell development. J Biol Chem 279:25339–25344

    PubMed  CAS  Google Scholar 

  82. Yadav N, Cheng D, Richard S, Morel M, Iyer VR, Aldaz CM, Bedford MT (2008) CARM1 promotes adipocyte differentiation by coactivating PPARγ. EMBO Rep 9:193–198

    PubMed  CAS  Google Scholar 

  83. Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM, Montminy M, Evans RM (2001) A transcriptional switch mediated by cofactor methylation. Science 294:2507–2511

    PubMed  CAS  Google Scholar 

  84. An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117:735–748

    PubMed  CAS  Google Scholar 

  85. Hassa PO, Covic M, Bedford MT, Hottiger MO (2008) Protein arginine methyltransferase 1 coactivates NF-κB-dependent gene expression synergistically with CARM1 and PARP1. J Mol Biol 377:668–678

    PubMed  CAS  Google Scholar 

  86. Pollack BP, Kotenko SV, He W, Izotova LS, Barnoski BL, Pestka S (1999) The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J Biol Chem 274:31531–31542

    PubMed  CAS  Google Scholar 

  87. Branscombe TL, Frankel A, Lee JH, Cook JR, Yang Z, Pestka S, Clarke S (2001) PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J Biol Chem 276:32971–32976

    PubMed  CAS  Google Scholar 

  88. Richard S, Morel M, Cléroux P (2005) Arginine methylation regulates IL-2 gene expression: a role for protein arginine methyltransferase 5 (PRMT5). Biochem J 388:379–386

    PubMed  CAS  Google Scholar 

  89. Fabbrizio E, El Messaoudi S, Polanowska J, Paul C, Cook JR, Lee JH, Negre V, Rousset M, Pestka S, Le Cam A, Sardet C (2002) Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep 3:641–645

    PubMed  CAS  Google Scholar 

  90. Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S (2004) Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 24:9630–9645

    PubMed  CAS  Google Scholar 

  91. Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21:8289–8300

    PubMed  CAS  Google Scholar 

  92. Meister G, Fischer U (2002) Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J 21:5853–5863

    PubMed  CAS  Google Scholar 

  93. Lacroix M, Messaoudi SE, Rodier G, Le Cam A, Sardet C, Fabbrizio E (2008) The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep 9:452–458

    PubMed  CAS  Google Scholar 

  94. Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, La Thangue NB (2008) Arginine methylation regulates the p53 response. Nat Cell Biol 10:1431–1439

    PubMed  CAS  Google Scholar 

  95. Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277:3537–3543

    PubMed  CAS  Google Scholar 

  96. Boulanger MC, Liang C, Russell RS, Lin R, Bedford MT, Wainberg MA, Richard S (2005) Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J Virol 79:124–131

    PubMed  CAS  Google Scholar 

  97. Invernizzi CF, Xie B, Frankel FA, Feldhammer M, Roy BB, Richard S, Wainberg MA (2007) Arginine methylation of the HIV-1 nucleocapsid protein results in its diminished function. AIDS 21:795–805

    PubMed  CAS  Google Scholar 

  98. Xie B, Invernizzi CF, Richard S, Wainberg MA (2007) Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat Interactions with both cyclin T1 and the Tat transactivation region. J Virol 81:4226–4234

    PubMed  CAS  Google Scholar 

  99. Miranda TB, Webb KJ, Edberg DD, Reeves R, Clarke S (2005) Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a. Biochem Biophys Res Commun 336:831–835

    PubMed  CAS  Google Scholar 

  100. Sgarra R, Lee J, Tessari MA, Altamura S, Spolaore B, Giancotti V, Bedford MT, Manfioletti G (2006) The AT-hook of the chromatin architectural transcription factor high mobility group A1a is arginine-methylated by protein arginine methyltransferase 6. J Biol Chem 281:3764–3772

    PubMed  CAS  Google Scholar 

  101. Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H, Lüscher B, Amati B (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449:933–937

    PubMed  CAS  Google Scholar 

  102. Lee JH, Cook JR, Yang ZH, Mirochnitchenko O, Gunderson SI, Felix AM, Herth N, Hoffmann R, Pestka S (2005) PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine. J Biol Chem 280:3656–3664

    PubMed  CAS  Google Scholar 

  103. Miranda TB, Miranda M, Frankel A, Clarke S (2004) PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J Biol Chem 279:22902–22907

    PubMed  CAS  Google Scholar 

  104. Gros L, Delaporte C, Frey S, Decesse J, de Saint-Vincent BR, Cavarec L, Dubart A, Gudkov AV, Jacquemin-Sablon A (2003) Identification of new drug sensitivity genes using genetic suppressor elements: Protein arginine N-methyltransferase mediates cell sensitivity to DNA-damaging agents. Cancer Res 63:164–171

    PubMed  CAS  Google Scholar 

  105. Verbiest V, Montaudon D, Tautu MT, Moukarzel J, Portail JP, Markovits J, Robert J, Ichas F, Pourquier P (2008) Protein arginine (N)-methyl transferase 7 (PRMT7) as a potential target for the sensitization of tumor cells to camptothecins. FEBS Lett 582:1483–1489

    PubMed  CAS  Google Scholar 

  106. Lee J, Sayegh J, Daniel J, Clarke S, Bedford MT (2005) PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J Biol Chem 280:32890–32896

    PubMed  CAS  Google Scholar 

  107. Sayegh J, Webb K, Cheng D, Bedford MT, Clarke SG (2007) Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J Biol Chem 282:36444–36453

    PubMed  CAS  Google Scholar 

  108. Kim JD, Kako K, Kakiuchi M, Park GG, Fukamizu A (2008) EWS is a substrate of type I protein arginine methyltransferase, PRMT8. Int J Mol Med 22:309–315

    PubMed  CAS  Google Scholar 

  109. Pahlich S, Zakaryan RP, Gehring H (2008) Identification of proteins interacting with protein arginine methyltransferase 8: the Ewing sarcoma (EWS) protein binds independent of its methylation state. Proteins 72:25–37

    Google Scholar 

  110. Cook JR, Lee JH, Yang ZH, Krause CD, Herth N, Hoffmann R, Pestka S (2006) FBXO11/PRMT9, a new protein arginine methyltransferase, symmetrically dimethylates arginine residues. Biochem Biophys Res Commun 342:472–481

    PubMed  CAS  Google Scholar 

  111. Le Poole IC, Sarangarajan R, Zhao Y, Stennett LS, Brown TL, Sheth P, Miki T, Boissy RE (2001) ‘VIT1’, a novel gene associated with vitiligo. Pigment Cell Res 14:475–484

    PubMed  CAS  Google Scholar 

  112. Kipreos ET, Pagano M (2000) The F-box protein family. Genome Biol 1:3002.1–3002.7 reviews

    Google Scholar 

  113. Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW (2004) Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18:2573–2580

    PubMed  CAS  Google Scholar 

  114. Hardisty-Hughes RE, Tateossian H, Morse SA, Romero MR, Middleton A, Tymowska-Lalanne Z, Hunter AJ, Cheeseman M, Brown SD (2006) A mutation in the F-box gene, Fbxo11, causes otitis media in the Jeff mouse. Hum Mol Genet 15:3273–3279

    PubMed  CAS  Google Scholar 

  115. Segade F, Daly KA, Allred D, Hicks PJ, Cox M, Brown M, Hardisty-Hughes RE, Brown SD, Rich SS, Bowden DW (2006) Association of the FBXO11 gene with chronic otitis media with effusion and recurrent otitis media: the Minnesota COME/ROM family study. Arch Otolaryngol Head Neck Surg 132:729–733

    PubMed  Google Scholar 

  116. Abida WM, Nikolaev A, Zhao W, Zhang W, Gu W (2007) FBXO11 promotes the neddylation of p53 and inhibits its transcriptional activity. J Biol Chem 282:1797–1804

    PubMed  CAS  Google Scholar 

  117. Fielenbach N, Guardavaccaro D, Neubert K, Chan T, Li D, Feng Q, Hutter H, Pagano M, Antebi A (2007) DRE-1: an evolutionarily conserved F box protein that regulates C. elegans developmental age. Dev Cell 12:443–455

    PubMed  CAS  Google Scholar 

  118. Blatch GL, Lässle M (1999) The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. Bioessays 21:932–939

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, S.S. The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell. Mol. Life Sci. 66, 2109–2121 (2009). https://doi.org/10.1007/s00018-009-0010-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0010-x

Keywords

Navigation