Skip to main content
Log in

Krahn’s proof of the Rayleigh conjecture revisited

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

The paper is a discussion of Krahn’s proof of the Rayleigh conjecture that amongst all membranes of the same area and the same physical properties, the circular one has the lowest ground frequency. We show how his approach coincides with the modern techniques of geometric measure theory using the co-area formula. We furthermore discuss some issues and generalisations of his proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio L., Fusco N., Pallara D.: Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000)

    Google Scholar 

  2. W. Arendt and S. Monniaux, Domain Perturbation for the first Eigenvalue of the Dirichlet Schrödinger Operator, in: M. Demuth and B. Schulze (eds.), Partial Differential Equations and Mathematical Physics, Operator Theory: Advances and Applications, 78, pp. 9–19, Birkhäuser, Basel, Holzau, 1994, 1995.

  3. M. S. Ashbaugh and R. D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian, in: Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Proc. Sympos. Pure Math. 76, pp. 105–139, Amer. Math. Soc., Providence, RI, 2007.

  4. C. Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics 7, Pitman, Boston, Mass., 1980.

  5. Bossel M.-H.: Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math. 302, 47–50 (1986)

    MathSciNet  MATH  Google Scholar 

  6. Brothers J.E., Ziemer W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)

    MathSciNet  MATH  Google Scholar 

  7. D. Bucur and G. Buttazzo, Variational methods in shape optimization problems, Progress in Nonlinear Differential Equations and their Applications 65, Birkhäuser Boston Inc., Boston, MA, 2005.

  8. Bucur D., Daners D.: An alternative approach to the Faber-Krahn inequality for Robin problems. Calc. Var. Partial Differential Equations 37, 75–86 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bucur D., Giacomini A.: A variational approach of the isoperimetric inequality for the Robin eigenvalue problem. Arch. Ration. Mech. Anal. 198, 927–961 (2010)

    Article  MathSciNet  Google Scholar 

  10. I. Chavel, Isoperimetric inequalities, Cambridge Tracts in Mathematics 145, Cambridge University Press, Cambridge, 2001.

  11. Courant R.: Beweis des Satzes, daß von allen homogenen Membranen gegebenen Umfanges und gegebener Spannung die kreisförmige den tiefsten Grundton besitzt. Math. Z. 1, 321–328 (1918)

    Article  MathSciNet  Google Scholar 

  12. Q. Dai and Y. Fu, Faber-Krahn inequality for Robin problem involving p- Laplacian, Preprint (2008), arXiv:0912.0393.

  13. Daners D.: A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann. 335, 767–785 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daners D., Kawohl B.: An isoperimetric inequality related to a Bernoulli problem. Calc. Var. Partial Differential Equations 39, 547–555 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Daners D., Kennedy J.: Uniqueness in the Faber-Krahn Inequality for Robin Problems. SIAM J. Math. Anal. 39, 1191–1207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

  17. G. Faber, Beweis dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsbericht der bayerischen Akademie der Wissenschaften, pp. 169–172 (1923).

  18. Federer H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959)

    MathSciNet  MATH  Google Scholar 

  19. H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften 153, Springer, New York, 1969.

  20. N. Fusco, Geometrical aspects of symmetrization, in: Calculus of variations and nonlinear partial differential equations, Lecture Notes in Math. 1927, pp. 155–181, Springer-Verlag, Berlin, 2008.

  21. Henrot A.: Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006)

    Google Scholar 

  22. B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics 1150, Springer-Verlag, Berlin, 1985.

  23. Kennedy J.: An isoperimetric inequality for the second eigenvalue of the Laplacian with Robin boundary conditions. Proc. Amer. Math. Soc. 137, 627–633 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Kesavan, Symmetrization & applications, Series in Analysis 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.

  25. Krahn E.: Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94, 97–100 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat) A 9, 1–44 (1926), English translation in [28, pp 139–175].

  27. G. Leoni, A first course in Sobolev spaces, Graduate Studies in Mathematics 105, American Mathematical Society, Providence, RI, 2009.

  28. Ü. Lumiste and J. Peetre (eds.), Edgar Krahn, 1894–1961, IOS Press, Amsterdam, 1994, a centenary volume.

  29. Maz’ja V.G.: Sobolev spaces, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985)

    Google Scholar 

  30. Osserman R.: The isoperimetric inequality. Bull. Amer. Math. Soc. 84, 1182–1238 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Payne L.E.: Isoperimetric inequalities and their applications. SIAM Rev. 9, 453–488 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pólya G.: Torsional rigidity, principal frequency, electrostatic capacity and symmetrization. Quart. Appl. Math. 6, 267–277 (1948)

    MathSciNet  MATH  Google Scholar 

  33. G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, 27, Princeton University Press, Princeton, N. J., 1951.

  34. Polya G., Weinstein A.: On the torsional rigidity of multiply connected cross-sections. Ann. of Math. (2) 52, 154–163 (1950)

    Article  MathSciNet  Google Scholar 

  35. J. W. Rayleigh and B. Strutt, The Theory of Sound, Dover Publications, New York, N. Y., 1945, 2nd ed.

  36. Rayleigh L.: The Theory of Sound, 1st ed. Macmillan, London (1877)

    Google Scholar 

  37. Rudin W.: Real and Complex Analysis, 2nd ed. McGraw-Hill Inc., New York (1974)

    MATH  Google Scholar 

  38. Schmidt E.: Über das isoperimetrische Problem im Raum von n Dimensionen. Math. Z. 44, 689–788 (1939)

    Article  MathSciNet  Google Scholar 

  39. Sperner E. Jr.: Symmetrisierung für Funktionen mehrerer reeller Variablen. Manuscripta Math. 11, 159–170 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  40. Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tonelli L.: Sur un problème de Lord Rayleigh. Monatsh. Math. Phys. 37, 253–280 (1930)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Daners.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daners, D. Krahn’s proof of the Rayleigh conjecture revisited. Arch. Math. 96, 187–199 (2011). https://doi.org/10.1007/s00013-010-0218-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-010-0218-x

Mathematics Subject Classification (2010)

Keywords

Navigation