Skip to main content

Advertisement

Log in

Detection of galectin-3 in patients with inflammatory bowel diseases: new serum marker of active forms of IBD?

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

It is an open question whether multifunctional galectin-3 can be a serum marker in inflammatory bowel disease.

Methods

Western blots and commercial ELISA detected and quantitated the lectin immunocytochemistry using double labeling localized it in tissue sections.

Results

Serum concentrations were significantly increased in specimen of patients with active and remission-stage ulcerative colitis and Crohn’s disease, associated with emerging positivity of CD14+ cells.

Conclusion

Enhanced concentration of galectin-3 in serum reflects presence of disease and points to its involvement in the pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gabius H-J. Cell surface glycans: the why and how of their functionality as biochemical signals in lectin-mediated information transfer. Crit Rev Immunol. 2006;26:43–79.

    PubMed  CAS  Google Scholar 

  2. Villalobo A, Nogales-González A, Gabius H-J. A guide to signaling pathways connecting protein-glycan interaction with the emerging versatile effector functionality of mammalian lectins. Trends Glycosci Glycotechnol. 2006;18:1–37.

    CAS  Google Scholar 

  3. Dimic J, Dabelic S, Flögel M. Galectin-3: and open-ended story. Biochim Biophys Acta. 2006;1760:616–35.

    Google Scholar 

  4. Gabius HJ. Animal lectins. Eur J Biochem. 1997;243:543–76.

    Article  PubMed  CAS  Google Scholar 

  5. Ahmad N, Gabius H-J, André S, Kaltner H, Sabesan S, Roy R, et al. Galectin-3 precipitates as a pentamer with synthetic carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem. 2004;279:10841–7.

    Article  PubMed  CAS  Google Scholar 

  6. Almkvist J, Karlsson A. Galectins as inflammatory mediators. Glycoconj J. 2004;19:575–81.

    Article  PubMed  Google Scholar 

  7. Kübler D, Hung C-W, Dam TK, Kopitz J, André S, Kaltner H, et al. Phosphorylated human galectin-3: facile large-scale preparation of active lectin and detection of structural changes by CD spectroscopy. Biochim Biophys Acta. 2008;1780:716–22.

    PubMed  Google Scholar 

  8. Shanahan F. Inflammatory bowel disease: immunodiagnostics, immunotherapeutics, and ecotherapeutics. Gastroenterology. 2001;120:622–35.

    Article  PubMed  CAS  Google Scholar 

  9. Hibi T, Ogata H. Novel pathophysiological concepts of inflammatory bowel disease. J Gastroenterol. 2006;41:10–6.

    Article  PubMed  Google Scholar 

  10. Scaldaferri F, Fiocchi C. Inflammatory bowel disease: progress and current concepts of etiopathogenesis. J Dig Dis. 2007;8:171–8.

    Article  PubMed  CAS  Google Scholar 

  11. Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S. Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res. 2000;6:1389–93.

    PubMed  CAS  Google Scholar 

  12. Jensen-Jarolin E, Neumann C, Oberhuber G, Gscheidlinger R, Neuchrist C, Reinisch W, et al. Anti-galectin-3 IgG autoantobodies in patients with Crohn’s disease characterized by means of phage display peptide libraries. J Clin Immunol. 2001;21:348–56.

    Article  Google Scholar 

  13. Best WR. Predicting the Crohn’s disease activity index from the Harvey-Bradshaw Index. Inflamm Bowel Dis. 2006;12:304–10.

    Article  PubMed  Google Scholar 

  14. Rutgeerts P, Sandborn WJ, Feagan BG, Reinisch W, Olson A, Johanns J, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353:2462–76.

    Article  PubMed  CAS  Google Scholar 

  15. Schroeder KW, Tremaine WJ, Ilstrup DM (1987) Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med 24;317:1625-9.

    Google Scholar 

  16. Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, et al. Negative regulation of neuroblastoma cell growth by carbohydrate- dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem. 2001;276:35917–23.

    Article  PubMed  CAS  Google Scholar 

  17. Beer A, André S, Kaltner H, Lensch M, Franz S, Sarter K, et al. Human galectins as sensors for apoptosis/necrosis-associated surface changes of granulocytes and lymphocytes. Cytom Part A. 2008;73A:139–47.

    Article  Google Scholar 

  18. Hudcovic T, Stepankova R, Cebra J, Tlaskalova-Hogenova H. The role of microflora in the development of intestinal inflammation: acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbiol (Praha). 2001;46:565–72.

    Article  CAS  Google Scholar 

  19. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69:238–49.

    PubMed  CAS  Google Scholar 

  20. Lodinova-Zadnikova R, Cukrowska B, Tlaskalova-Hogenova H. Oral administration of probiotic Escherichia coli after birth reduces frequency of allergies and repeated infections later in life (after 10 and 20 years). Int Arch Allergy Immunol. 2003;131:209–11.

    Article  PubMed  Google Scholar 

  21. Kwapinski JBG. Methodology of Immunochemical and Immunological Research. New York: Wiley; 1972. p. 605–7.

    Google Scholar 

  22. André S, Kojima S, Yamazaki N, Fink C, Kaltner H, Kayser K, et al. Galectins-1 and -3 and their ligands in tumor biology. J Cancer Res Clin Oncol. 1999;125:461–74.

    Article  PubMed  Google Scholar 

  23. Froňková V, Holíková Z, Liu F-T, Homolka J, Rijken DC, André S, et al. Simultaneous detection of endogenous lectins and their binding capability at the single-cell level: a technical note. Folia Biol (Praha). 1999;45:157–62.

    Google Scholar 

  24. Dam TK, Gabius H-J, André S, Kaltner H, Lensch M, Brewer CF. Galectins bind to the multivalent glycoprotein asialofetuin with enhanced affinities and a gradient of decreasing binding constants. Biochemistry. 2005;44:12564–71.

    Article  PubMed  CAS  Google Scholar 

  25. Gabius HJ, Schröter C, Gabius S, Brinck U, Tietze LF. Binding of T-antigen-bearing neoglycoprotein and peanut agglutinin to cultured tumor cells and breast carcinomas. J Histchem Cytochem. 1990;38:1625–31.

    CAS  Google Scholar 

  26. Gabius HJ, Gabius S, Zemlyanukhina TV, Bovin NV, Brinck U, Danguy A, et al. Reverse lectin histochemistry: design and application of glycoligands for detection of cell and tissue lectins. Histol Histopathol. 1993;8:369–83.

    PubMed  CAS  Google Scholar 

  27. Plzák J, Betka J, Smetana K Jr, Chovanec M, Kaltner H, André S, et al. Galectin-3: an emerging prognostic indicator in advanced head and neck carcinoma. Eur J Cancer. 2004;40:2324–30.

    Article  PubMed  Google Scholar 

  28. Gabius HJ, Wosgien B, Hendrys M, Bardosi A. Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neogycoprotein and lectin-specific antibody. Histochemistry. 1991;95:269–77.

    Article  PubMed  CAS  Google Scholar 

  29. Lohr M, Lensch M, André S, Kaltner H, Siebert HC, Smetana K Jr, et al. Murine homodimeric adhesion/growth-regulatory galectins-1, -2, and -7: comparative profiling of gene/promoter sequences by database mining, of expression by RT-PCR/immunohistochemsitry and of contact sites for carbohydrate ligands by computational chemistry. Folia Biol (Praha). 2007;53:109–28.

    CAS  Google Scholar 

  30. Jensen-Jarolim E, Gscheidlinger R, Oberhuber G, Neuchrist C, Lucas T, Bises G, et al. The constitutive expression of galectin-3 is downregulated in the intestinal epithelia of Crohn’s disease patients, and tumour necrosis factor-α decreases the level of galectin-3-specific mRNA in HCT-8 cells. Eur J Gastroenterol Hepatol. 2002;14:145–52.

    Article  PubMed  CAS  Google Scholar 

  31. Müller S, Schaffer T, Flogerzi B, Fleetwood A, Weimann R, Schoepfer AM, et al. Galectin-3 modulates T cell activity and is reduced in the inflamed intestinal epithelium in IBD. Inflamm Bowel Dis. 2006;12:588–97.

    Article  PubMed  Google Scholar 

  32. Shiobara N, Suzuki Y, Aoki H, Gotoh A, Fujii Y, Hamada Y, et al. Bacterial superantigens and T cell receptor β-chain-bearing T cells in the immunopathogenesis of ulcerative colitis. Clin Exp Immunol. 2007;150:13–21.

    PubMed  CAS  Google Scholar 

  33. Saussez S, Glinoer D, Chantrain G, Pattou F, Carnaille B, André S, et al. Serum galectin-1 and galectin-3 levels in benign and malignant nodular thyroid disease. Thyroid. 2008;18:705–12.

    Article  PubMed  CAS  Google Scholar 

  34. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.

    PubMed  CAS  Google Scholar 

  35. Hamdani G, Gabet Y, Rachmilewitz D, Karmeli F, Bab I, Dresner-Pollak R. Dextran sodium sulfate-induced colitis causes rapid bone loss in mice. Bone. 2008;43:945–50.

    Article  PubMed  CAS  Google Scholar 

  36. Subramanian S, Roberts CL, Hart CA, Martin HM, Edwards SW, Rhodes JM, et al. Replication of colonic crohn’s disease mucosal Escherichia coli isolates within macrophages and their susceptibility to antibiotics. Antimicrob Agents Chemother. 2008;52:427–34.

    Article  PubMed  CAS  Google Scholar 

  37. Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, Tuckova L, Cukrowska B, Lodinova-Zadnikova R, et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett. 2004;93:97–108.

    Article  PubMed  CAS  Google Scholar 

  38. Elson CO, Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev. 2005;206:260–76.

    Article  PubMed  Google Scholar 

  39. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43:3380–9.

    Article  PubMed  Google Scholar 

  40. Sydora BC, Martin SM, Lupicki M, Dieleman LA, Doyle J, Walker JW, et al. Bacterial antigens alone can influence intestinal barrier integrity, but live bacteria are required for initiation of intestinal inflammation and injury. Inflamm Bowel Dis. 2006;12:429–36.

    Article  PubMed  Google Scholar 

  41. Stepankova R, Powrie F, Kofronova O, Kozakova H, Hudcovic T, Hrncir T, et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4 + T cells. Inflamm Bowel Dis. 2007;13:1202–11.

    Article  PubMed  Google Scholar 

  42. Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR. Mucosal Immunology. New York: Academic; 1999.

    Google Scholar 

  43. Walker WAJ. Development of the intestinal mucosal barrier. Pediatr Gastroenterol Nutr. 2002;34:S33–9.

    Article  CAS  Google Scholar 

  44. Tlaskalová-Hogenová H, Tucková L, Stepánková R, Hudcovic T, Palová-Jelínková L, Kozáková H, et al. Involvement of innate immunity in the development of inflammatory and autoimmune diseases. Ann NY Acad Sci. 2005;1051:787–98.

    Article  PubMed  Google Scholar 

  45. Smith PD, Smythies LE, Mosteller-Barnum M, Sibley DA, Russell MW, Merger M, et al. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J Immunol. 2001;167:2651–6.

    PubMed  CAS  Google Scholar 

  46. Smith PD, Ochsenbauer-Jambor C, Smythies LE. Intestinal macrophages: unique effector cells of the innate immune system. Immunol Rev. 2005;206:149–59.

    Article  PubMed  CAS  Google Scholar 

  47. Rogler G, Andus T, Aschenbrenner E, Vogl D, Falk W, Scholmerich J, et al. Alterations of the phenotype of colonic macrophages in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 1997;9:893–9.

    PubMed  CAS  Google Scholar 

  48. MacDermott RP. Treatment of irritable bowel syndrome in outpatients with inflammatory bowel disease using a food and beverage intolerance, food and beverage avoidance diet. Inflamm Bowel Dis. 2007;13:91–6.

    Article  PubMed  Google Scholar 

  49. MacDonald TT, Gordon JN. Bacterial regulation of intestinal immune responses. Gastroenterol Clin North Am. 2005;34:401–12.

    Article  PubMed  Google Scholar 

  50. Lohr M, Kaltner H, Lensch M, Andre S, Sinowatz F, Gabius HJ. Cell-type-specific expression of murine multifunctional galectin-3 and its association with follicular atresia/luteolysis in contrast to pro-apoptic galectins-1 and -7. Histochem Cell Biol. 2008;130:567–81.

    Article  PubMed  CAS  Google Scholar 

  51. Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T, et al. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol. 2000;165:2156–64.

    PubMed  CAS  Google Scholar 

  52. André S, Sanchez-Ruderisch H, Nakagawa H, Buchholz M, Koptiz J, Forberich P, et al. Tumor suppressor p16INK4a–modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J. 2007;272:3233–56.

    Article  Google Scholar 

  53. Schwartz-Albiez R. Inflammation and glycosciences. In: Gabius HJ, editor. The sugar code. Fundamentals of glycosciences. Weinheim: Wiley; 2009 (in press).

  54. Sharma U, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JPM, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation (project nos. 310/08/H077 and 303/060/974), the Academy of Sciences (project no. S500200572), the Ministry of Education, Youth and Sports of the Czech Republic (projects no. 2B06155, no. MSM0021620806 and 1M0538), the Institute of Microbiology (project no. AV0Z50200510), the Ministry of Health (project no. NR8963-3), the research initiative LMUexcellent, the Verein zur Förderung des biologisch-technologischen Fortschritts in der Medizin e. V. and an EU Marie Curie Research Training Network grant (contract no. MCRTN-CT-2005-19561). The authors are grateful to B. Hofmanová and I. Burdová for excellent technical assistance, Dr. B. Friday and Dr. S. Namirha for valuable discussion and to the reviewers of this manuscript for their inspiring advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Tlaskalová-Hogenová.

Additional information

Responsible Editor: I. Ahnfelt-Rønne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frol’ová, L., Smetana, K., Borovská, D. et al. Detection of galectin-3 in patients with inflammatory bowel diseases: new serum marker of active forms of IBD?. Inflamm. Res. 58, 503–512 (2009). https://doi.org/10.1007/s00011-009-0016-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0016-8

Keywords

Navigation