Skip to main content
Log in

Interaction of nitric oxide with the oxygen evolving complex of photosystem II and manganese catalase: a comparative study

  • Original Article
  • Published:
Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We compare the interaction of nitric oxide with the S states of the oxygen evolving complex (OEC) of photosystem II and the dinuclear Mn cluster of Thermus thermophilus catalase. Flash fluorescence studies indicate that the S3 state of the OEC in the presence of ca. 0.6 mM NO is reduced to the S1 with an apparent halftime of ca. 0.4 s at about 18°C, compared with a biphasic decay, with approximate halftimes of 28 s for S3 to S2 and 140 s for S2 to S1 in the absence of NO. Under similar conditions the S2 state is reduced by NO to the S1 state with an approximate halftime of 2 s. These results extend a recent study indicating a slow reduction of the S1 state at − 30°C, via the S0 and S−1 states, to a Mn(II)-Mn(III) state resembling the corresponding state in catalase. The reductive mode of action of NO is repeated with the di-Mn cluster of catalase: the Mn(III)-Mn(III) redox state is reduced to the Mn(II)-Mn(II) state via the intermediate Mn(II)-Mn(III) state. The kinetics of this reduction suggest a decreasing reduction potential with decreasing oxidation state, similar to what is observed with the active states of the OEC. What is unique about the OEC is the rapid interaction of NO with the S3 state of the OEC, which is compatible with a metalloradical character of this state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

chl:

chlorophyll

F0 :

fluorescence level when all PSII reaction centers are in the open state

MES:

2-[N-morpholineethanesulfonic acid]

OEC:

oxygen evolving complex

PSII:

photosystem II

PSII membranes:

thylakoid membrane fragments enriched in PSII

S states:

S0–S4 oxidation states of the water oxidizing complex

tyr YZ, tyr YD :

the fast and slow tyrosine electron donors of PSII

References

  1. Pecoraro VL (ed) (1992) Manganese redox enzymes. VCH, New York

    Google Scholar 

  2. Rutherford AW (1989) Trends Biochem Sci 14: 227–232

    Article  CAS  PubMed  Google Scholar 

  3. Debus RJ (1992) Biochim Biophys Acta 1102: 269–352

    Article  CAS  PubMed  Google Scholar 

  4. Diner BA, Babcock GT (1996) In: Ort RD, Yocum CF (eds) Advances in photosynthesis, vol 4. Kluwer, Dordrecht, pp 213–247

  5. Bricker TM, Ghanotakis DF (1996) In: Ort RD, Yocum CF (eds) Advances in photosynthesis, vol 4. Kluwer, Dordrecht, pp 113–136

  6. Britt RD (1996) In: Ort RD, Yocum CF (eds) Advances in photosynthesis, vol 4. Kluwer, Dordrecht, pp 137–164

  7. Barynin VV, Grebenco AI (1986) Dokl Akad Sci USSR 286: 461–464

    CAS  Google Scholar 

  8. Kono Y, Fridovich I (1983) J Biol Chem 258: 6015–6019

    CAS  PubMed  Google Scholar 

  9. Khangulov SV, Barynin VV, Antonyuk-Barynina SV (1990) Biochim Biophys Acta 1020: 25–33

    Article  CAS  Google Scholar 

  10. Waldo GS, Fronko RM, Penner-Hahn JE (1991) Biochemistry 30: 10486–10490

    Article  CAS  PubMed  Google Scholar 

  11. Khangulov SV, Barynin VV, Voevodskaya NV, Grebenco AI (1990) Biochim Biophys Acta 1020: 305–310

    Article  CAS  Google Scholar 

  12. Zheng M, Khangulov SV, Dismukes GC, Barynin VV (1994) Inorg Chem 33: 382–387

    Article  CAS  Google Scholar 

  13. Waldo GS, Penner-Hahn JE (1995) Biochemistry 34: 1507–1512

    Article  CAS  PubMed  Google Scholar 

  14. Schansker G, Petrouleas V (1998) In: G. Garab (ed) Photosynthesis: mechanisms and effects, vol 2. Kluwer, Dordrecht, pp 1319–1322

  15. Sarrou J, Ioannidis N, Deligiannakis Y, Petrouleas V (1998) Biochemistry 37: 3581–3587

    Article  CAS  PubMed  Google Scholar 

  16. Ioannidis N, Sarrou J, Schansker G, Petrouleas V (1998) Biochemistry 37: 16445–16451

    Article  CAS  PubMed  Google Scholar 

  17. Berthold DA, Babcock GT, Yocum CF (1981) FEBS Lett 134: 231–234

    Article  CAS  Google Scholar 

  18. Ford RC, Evans MCW (1983) FEBS Lett 160: 159–164

    Article  CAS  Google Scholar 

  19. Kramer DM, Robinson HR, Crofts AR (1990) Photosynth Res 26: 181–193

    Article  CAS  PubMed  Google Scholar 

  20. Delosme R (1972) In: Forti G, Avron M, Melandri A (eds) Proceedings of the 2nd international congress on photosynthesis research, vol 1. Junk, The Hague, pp 187–195

  21. Diner BA, Petrouleas V (1990) Biochim Biophys Acta 1015: 141–149

    Google Scholar 

  22. Bowes JM, Crofts AR (1980) Biochim Biophys Acta 590: 373–384

    Article  CAS  PubMed  Google Scholar 

  23. Kurreck J, Renger G (1998) In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 2. Kluwer, Dordrecht, pp 1157–1160

  24. Tinoco I, Sauer K, Wang JC (1978) Physical chemistry. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  25. Goussias C, Ioannidis N, Petrouleas V (1997) Biochemistry 36: 9261–9566

    Article  CAS  PubMed  Google Scholar 

  26. Matsukawa T, Mino H, Yoneda D, Kawamori A (1999) Biochemistry 38: 4072–4077

    Article  CAS  PubMed  Google Scholar 

  27. Zheng M, Dismukes GC (1996) Inorg Chem 35: 3307–3319

    Article  CAS  PubMed  Google Scholar 

  28. Yachandra VK, Sauer K, Klein MP (1996) Chem Rev 96: 2927–2950

    Article  CAS  PubMed  Google Scholar 

  29. Ono T, Nogushi T, Inoue Y, Kusunoki MT, Matsushita T, Oyanagi H (1992) Science 258: 1335–1337

    Article  CAS  PubMed  Google Scholar 

  30. Iuzzolino L, Dittmer J, Doerner W, Meyer-Klaucke H, Dau H (1998) Biochemistry 37: 17112–17119

    Article  CAS  PubMed  Google Scholar 

  31. Styring SA, Rutherford AW (1988) Biochemistry 27: 4915–4923

    Article  CAS  Google Scholar 

  32. Siegbahn PEM, Crabtree RH (1999) J Am Chem Soc 121: 117–127

    Article  CAS  Google Scholar 

  33. Haumann M, Junge W (1999) Biochim Biophys Acta 1411: 86–91

    Article  CAS  PubMed  Google Scholar 

  34. Petrouleas V, Diner BA (1990) Biochim Biophys Acta 1015: 131–140

    Article  CAS  Google Scholar 

  35. Sanakis Y, Goussias C, Mason RP, Petrouleas V (1997) Biochemistry 36: 1411–1417

    Article  CAS  PubMed  Google Scholar 

  36. Szalai VA, Brudvig GW (1996) Biochemistry 35: 15080–15087

    Article  CAS  PubMed  Google Scholar 

  37. Diner BA, Petrouleas V (1987) Biochim Biophys Acta 895: 107–125

    Article  CAS  Google Scholar 

  38. Styring S, Rutherford AW (1988) Biochim Biophys Acta 933: 378–387

    Article  CAS  Google Scholar 

  39. Messinger J, Renger G (1990) FEBS Lett 277: 141–146

    Article  CAS  PubMed  Google Scholar 

  40. Dexheimer SL, Klein MP (1992) J Am Chem Soc 114: 2821–2826

    Article  CAS  Google Scholar 

  41. Yamauchi T, Mino H, Matsukawa T, Kawamori A, Ono T (1997) Biochemistry 36: 7520–7526

    Article  CAS  PubMed  Google Scholar 

  42. Campbell KA, Gregor W, Pham DP, Peloquin JM, Debus RJ, Britt RD (1998) Biochemistry 37: 5039–5045

    Article  CAS  PubMed  Google Scholar 

  43. Messinger J, Nugent JHA, Evans MCW (1997) Biochemistry 36: 11055–11060

    Article  CAS  PubMed  Google Scholar 

  44. Åhrling KA, Peterson S, Styring S (1997) Biochemistry 36: 13148–13152

    Article  PubMed  Google Scholar 

  45. Messinger J, Robblee JH, Wa On Yu, Sauer K, Yachandra VK, Klein MP (1997) J Am Chem Soc 119: 11349–11350

    Article  CAS  Google Scholar 

  46. Vass I, Styring S (1991) Biochemistry 30: 830–839

    Article  CAS  PubMed  Google Scholar 

  47. Shinkarev VP, Wraight CA (1993) Proc Natl Acad Sci USA 90: 1834–1838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Yoder DW, Hwang J, Penner-Hahn JE (2000) In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 37. Dekker, New York, pp (in press)

  49. Whittaker MM, Barynin VV, Antonyuk SV, Whittaker JW (1999) Biochemistry 38: 9126–9136

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasili Petrouleas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioannidis, N., Schansker, G., Barynin, V.V. et al. Interaction of nitric oxide with the oxygen evolving complex of photosystem II and manganese catalase: a comparative study. JBIC 5, 354–363 (2000). https://doi.org/10.1007/PL00010664

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00010664

Keywords

Navigation