Skip to main content
Log in

A twisted look on kappa-Minkowski: U(1) gauge theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Kappa-Minkowski space-time is an example of noncommutative space-time with potentially interesting phenomenological consequences. However, the construction of field theories on this space, although operationally well-defined, is plagued with ambiguities. A part of ambiguities can be resolved by clarifying the geometrical picture of gauge transformations on the κ-Minkowski space-time. To this end we use the twist approach to construct the noncommutative U(1) gauge theory coupled to fermions. However, in this approach we cannot maintain the kappa-Poincaré symmetry; the corresponding symmetry of the twisted kappa-Minkowski space is the twisted igl(1,3) symmetry. We construct an action for the gauge and matter fields in a geometric way, as an integral of a maximal form. We use the Seiberg-Witten map to relate noncommutative and commutative degrees of freedom and expand the action to obtain the first order corrections in the deformation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  2. V. Chari, A.N. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge U.K. (1995).

    MATH  Google Scholar 

  3. W.J. Fairbairn and C. Meusburger, Quantum deformation of two four-dimensional spin foam models, arXiv:1012.4784 [INSPIRE].

  4. A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Lukierski, H. Ruegg, A. Nowicki and V.N. Tolstoi, Q deformation of Poincaré algebra, Phys. Lett. B 264 (1991) 331 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. J. Lukierski, A. Nowicki and H. Ruegg, New quantum Poincaré algebra and κ-deformed field theory, Phys. Lett. B 293 (1992) 344 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. P. Kosinski and P. Maslanka, The Duality between κ-Poincaré algebra and kappa Poincaré group, hep-th/9411033 [INSPIRE].

  9. G. Amelino-Camelia, Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int. J. Mod. Phys. D 11 (2002) 35 [gr-qc/0012051] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. G. Amelino-Camelia, Testable scenario for relativity with minimum length, Phys. Lett. B 510 (2001) 255 [hep-th/0012238] [INSPIRE].

    ADS  Google Scholar 

  11. J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002) 190403 [hep-th/0112090] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Kowalski-Glikman and S. Nowak, Doubly special relativity theories as different bases of κ-Poincaré algebra, Phys. Lett. B 539 (2002) 126 [hep-th/0203040] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. G. Gubitosi and F. Mercati, Relative Locality in κ-Poincaré, arXiv:1106.5710 [INSPIRE].

  14. S. Hossenfelder, Bounds on an energy-dependent and observer-independent speed of light from violations of locality, Phys. Rev. Lett. 104 (2010) 140402 [arXiv:1004.0418] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Amelino-Camelia, M. Matassa, F. Mercati and G. Rosati, Taming Nonlocality in Theories with Planck-Scale Deformed Lorentz Symmetry, Phys. Rev. Lett. 106 (2011) 071301 [arXiv:1006.2126] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Hossenfelder, Reply to arXiv:1006.2126 by Giovanni Amelino-Camelia et al., arXiv:1006.4587 [INSPIRE].

  17. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, The principle of relative locality, Phys. Rev. D 84 (2011) 084010 [arXiv:1101.0931] [INSPIRE].

    ADS  Google Scholar 

  18. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, Relative locality: A deepening of the relativity principle, Gen. Rel. Grav. 43 (2011) 2547 [arXiv:1106.0313] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. L. Freidel and L. Smolin, Gamma ray burst delay times probe the geometry of momentum space, arXiv:1103.5626 [INSPIRE].

  20. G. Amelino-Camelia and L. Smolin, Prospects for constraining quantum gravity dispersion with near term observations, Phys. Rev. D 80 (2009) 084017 [arXiv:0906.3731] [INSPIRE].

    ADS  Google Scholar 

  21. M. Dimitrijević, L. Jonke and L. Möller, U(1) gauge field theory on kappa-Minkowski space, JHEP 09 (2005) 068 [hep-th/0504129] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Dimitrijević, L. Jonke, L. Möller, E. Tsouchnika, J. Wess and M. Wohlgenannt, Deformed field theory on kappa space-time, Eur. Phys. J. C 31 (2003) 129 [hep-th/0307149] [INSPIRE].

    ADS  Google Scholar 

  23. M. Dimitrijević, F. Meyer, L. Möller and J. Wess, Gauge theories on the kappa Minkowski space-time, Eur. Phys. J. C 36 (2004) 117 [hep-th/0310116] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Connes, Non-commutative Geometry, Academic Press, New York U.S.A. (1994).

    Google Scholar 

  25. G. Landi, An Introduction to noncommutative spaces and their geometry, hep-th/9701078 [INSPIRE].

  26. J. Madore, An Introduction to Noncommutative Differential Geometry and its Physical Applications, second Edition, Cambridge University Press, Cambridge U.K. (1999).

    Book  MATH  Google Scholar 

  27. P. Aschieri, M. Dimitrijević, P. Kulish, F. Lizzi and J. Wess, Lecture notes in physics. Vol. 774: Noncommutative spacetimes: Symmetries in noncommutative geometry and field theory, Springer, Heidelberg Germany (2009).

    Google Scholar 

  28. J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces, Eur. Phys. J. C 16 (2000) 161 [hep-th/0001203] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, The Standard model on noncommutative space-time, Eur. Phys. J. C 23 (2002) 363 [hep-ph/0111115] [INSPIRE].

    ADS  Google Scholar 

  30. P. Aschieri, B. Jurčo, P. Schupp and J. Wess, Noncommutative GUTs, standard model and C,P,T, Nucl. Phys. B 651 (2003) 45 [hep-th/0205214] [INSPIRE].

    Article  ADS  Google Scholar 

  31. W. Behr, N. Deshpande, G. Duplančić, P. Schupp, J. Trampetić and J. Wess, The Z → gamma gamma, g g decays in the noncommutative standard model, Eur. Phys. J. C 29 (2003) 441 [hep-ph/0202121] [INSPIRE].

    ADS  Google Scholar 

  32. B. Melić, K. Passek-Kumerički, P. Schupp, J. Trampetić and M. Wohlgennant, The Standard model on non-commutative space-time: Electroweak currents and Higgs sector, Eur. Phys. J. C 42 (2005) 483 [hep-ph/0502249] [INSPIRE].

    ADS  Google Scholar 

  33. B. Melić, K. Passek-Kumerički, J. Trampetić, P. Schupp and M. Wohlgenannt, The Standard model on non-commutative space-time: Strong interactions included, Eur. Phys. J. C 42 (2005) 499 [hep-ph/0503064] [INSPIRE].

    ADS  Google Scholar 

  34. H. Grosse and R. Wulkenhaar, Renormalization of phi 4 theory on noncommutative R 4 in the matrix base, Commun. Math. Phys. 256 (2005) 305 [hep-th/0401128] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. M. Burić, D. Latas and V. Radovanović, Renormalizability of noncommutative SU(N) gauge theory, JHEP 02 (2006) 046 [hep-th/0510133] [INSPIRE].

    ADS  Google Scholar 

  36. C. Martin and C. Tamarit, Renormalisability of noncommutative GUT inspired field theories with anomaly safe groups, JHEP 12 (2009) 042 [arXiv:0910.2677] [INSPIRE].

    Article  ADS  Google Scholar 

  37. V. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254 [INSPIRE].

    Google Scholar 

  38. P. Aschieri and L. Castellani, Noncommutative D = 4 gravity coupled to fermions, JHEP 06 (2009) 086 [arXiv:0902.3817] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Agostini, F. Lizzi and A. Zampini, Generalized Weyl systems and kappa Minkowski space, Mod. Phys. Lett. A 17 (2002) 2105 [hep-th/0209174] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  40. M. Dimitrijević, L. Möller and E. Tsouchnika, Derivatives, forms and vector fields on the kappa-deformed Euclidean space, J. Phys. A 37 (2004) 9749 [hep-th/0404224] [INSPIRE].

    ADS  Google Scholar 

  41. S. Meljanac, A. Samsarov, M. Stojić and K. Gupta, Kappa-Minkowski space-time and the star product realizations, Eur. Phys. J. C 53 (2008) 295 [arXiv:0705.2471] [INSPIRE].

    Article  ADS  Google Scholar 

  42. P. Kosinski, P. Maslanka, J. Lukierski and A. Sitarz, Generalized κ-deformations and deformed relativistic scalar fields on noncommutative Minkowski space, hep-th/0307038 [INSPIRE].

  43. A. Agostini, G. Amelino-Camelia, M. Arzano and F. D’Andrea, Action functional for kappa-Minkowski noncommutative spacetime, hep-th/0407227 [INSPIRE].

  44. A. Sitarz, Noncommutative differential calculus on the kappa Minkowski space, Phys. Lett. B 349 (1995) 42 [hep-th/9409014] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  45. E. Beggs and S. Majid, Nonassociative Riemannian geometry by twisting, J. Phys. Conf. Ser. 254 (2010) 012002 [arXiv:0912.1553] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Meljanac and S. Kresić-Jurić, Differential structure on kappa-Minkowski space and kappa-Poincaré algebra, Int. J. Mod. Phys. A 26 (2011) 3385 [arXiv:1004.4647] [INSPIRE].

    ADS  Google Scholar 

  47. S. Meljanac and A. Samsarov, Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance, Int. J. Mod. Phys. A 26 (2011) 1439 [arXiv:1007.3943] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  48. S. Meljanac, A. Samsarov, J. Trampetić and M. Wohlgenannt, Noncommutative kappa-Minkowski phi4 theory: Construction, properties and propagation, arXiv:1107.2369 [INSPIRE].

  49. A. Borowiec and A. Pachol, kappa-Minkowski spacetime as the result of Jordanian twist deformation, Phys. Rev. D 79 (2009) 045012 [arXiv:0812.0576] [INSPIRE].

    ADS  Google Scholar 

  50. B. Jurčo, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge transformations for nonAbelian gauge groups on noncommutative spaces, Eur. Phys. J. C 17 (2000) 521 [hep-th/0006246] [INSPIRE].

    ADS  Google Scholar 

  51. M. Burić, D. Latas, V. Radovanović and J. Trampetić, Chiral fermions in noncommutative electrodynamics: Renormalizability and dispersion, Phys. Rev. D 83 (2011) 045023 [arXiv:1009.4603] [INSPIRE].

    ADS  Google Scholar 

  52. J. Lukierski, H. Ruegg and W.J. Zakrzewski, Classical and quantum-mechanics of free κ-relativistic systems, Annals Phys. 243 (1995) 90 [hep-th/9312153].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. G. Amelino-Camelia and S. Majid, Waves on noncommutative space-time and gamma-ray bursts, Int. J. Mod. Phys. A 15 (2000) 4301 [hep-th/9907110] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].

  55. R.C. Myers and M. Pospelov, Ultraviolet modifications of dispersion relations in effective field theory, Phys. Rev. Lett. 90 (2003) 211601 [hep-ph/0301124] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. P.A. Bolokhov and M. Pospelov, Low-energy constraints on kappa-Minkowski extension of the Standard Model, Phys. Lett. B 677 (2009) 160 [arXiv:0807.1522] [INSPIRE].

    ADS  Google Scholar 

  57. F.W. Hehl and Y.N. Obukhov, How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion and curvature?, Lect. Notes Phys. 562 (2001) 479 [gr-qc/0001010] [INSPIRE].

    Article  ADS  Google Scholar 

  58. H. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa Jonke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitrijević, M., Jonke, L. A twisted look on kappa-Minkowski: U(1) gauge theory. J. High Energ. Phys. 2011, 80 (2011). https://doi.org/10.1007/JHEP12(2011)080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)080

Keywords

Navigation