Skip to main content
Log in

Fixed-Functionals of three-dimensional Quantum Einstein Gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the non-perturbative renormalization group flow of f (R)-gravity in three-dimensional Asymptotically Safe Quantum Einstein Gravity. Within the conformally reduced approximation, we derive an exact partial differential equation governing the RG-scale dependence of the function f (R). This equation is shown to possess two isolated and one continuous one-parameter family of scale-independent, regular solutions which constitute the natural generalization of RG fixed points to the realm of infinite-dimensional theory spaces. All solutions are bounded from below and give rise to positive definite kinetic terms. Moreover, they admit either one or two UV-relevant deformations, indicating that the corresponding UV-critical hypersurfaces remain finite dimensional despite the inclusion of an infinite number of coupling constants. The impact of our findings on the gravitational Asymptotic Safety program and its connection to new massive gravity is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Weinberg, Ultraviolet Divergences In Quantum Theories Of Gravitation, in General Relativity, an Einstein Centenary Survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge, U.K. (1979). [INSPIRE]

    Google Scholar 

  2. S. Weinberg, What is quantum field theory and what did we think it is?, hep-th/9702027 [INSPIRE].

  3. S. Weinberg, Living with Infinities, arXiv:0903.0568 [INSPIRE].

  4. S. Weinberg, Effective Field Theory, Past and Future, PoS(CD09)001 [arXiv:0908.1964] [INSPIRE].

  5. M. Niedermaier and M. Reuter, The Asymptotic Safety Scenario in Quantum Gravity, Living Rev. Rel. 9 (2006) 5.

    Google Scholar 

  6. M. Reuter and F. Saueressig, Functional Renormalization Group Equations, Asymptotic Safety and Quantum Einstein Gravity, arXiv:0708.1317 [INSPIRE].

  7. R. Percacci, Asymptotic Safety, in Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter, D. Oriti ed., Cambridge University Press, Cambridge, U.K. (2009) [arXiv:0709.3851] [INSPIRE].

    Google Scholar 

  8. D.F. Litim, Fixed Points of Quantum Gravity and the Renormalisation Group, PoS(QG-Ph)024 [arXiv:0810.3675] [INSPIRE].

  9. M. Reuter and F. Saueressig, Quantum Einstein Gravity, New J. Phys. 14 (2012) 055022 [arXiv:1202.2274] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [INSPIRE].

    ADS  Google Scholar 

  11. M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. C. Bagnuls and C. Bervillier, Exact renormalization group equations. An Introductory review, Phys. Rept. 348 (2001) 91 [hep-th/0002034] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J. Berges, N. Tetradis and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept. 363 (2002) 223 [hep-ph/0005122] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. B. Delamotte, An Introduction to the nonperturbative renormalization group, Lect. Notes Phys. 852 (2012) 49 [cond-mat/0702365] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. O.J. Rosten, Fundamentals of the Exact Renormalization Group, Phys. Rept. 511 (2012) 177 [arXiv:1003.1366] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys. 322 (2007) 2831 [hep-th/0512261] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys. 852 (2012) 287 [hep-ph/0611146] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Braun, Fermion Interactions and Universal Behavior in Strongly Interacting Theories, J. Phys. G 39 (2012) 033001 [arXiv:1108.4449] [INSPIRE].

    ADS  Google Scholar 

  19. D. Dou and R. Percacci, The running gravitational couplings, Class. Quant. Grav. 15 (1998) 3449 [hep-th/9707239] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. W. Souma, Nontrivial ultraviolet fixed point in quantum gravity, Prog. Theor. Phys. 102 (1999) 181 [hep-th/9907027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D 65 (2002) 025013 [hep-th/0108040] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301 [hep-th/0312114] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. O. Lauscher and M. Reuter, Is quantum Einstein gravity nonperturbatively renormalizable?, Class. Quant. Grav. 19 (2002) 483 [hep-th/0110021] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. O. Lauscher and M. Reuter, Flow equation of quantum Einstein gravity in a higher derivative truncation, Phys. Rev. D 66 (2002) 025026 [hep-th/0205062] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. S. Rechenberger and F. Saueressig, The R 2 phase-diagram of QEG and its spectral dimension, Phys. Rev. D 86 (2012) 024018 [arXiv:1206.0657] [INSPIRE].

    ADS  Google Scholar 

  27. A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f(R)-gravity, Int. J. Mod. Phys. A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE].

    ADS  Google Scholar 

  28. P.F. Machado and F. Saueressig, On the renormalization group flow of f(R)-gravity, Phys. Rev. D 77 (2008) 124045 [arXiv:0712.0445] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. A. Codello, R. Percacci and C. Rahmede, Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. A. Bonanno, A. Contillo and R. Percacci, Inflationary solutions in asymptotically safe f(R) theories, Class. Quant. Grav. 28 (2011) 145026 [arXiv:1006.0192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

    ADS  Google Scholar 

  32. D. Benedetti, P.F. Machado and F. Saueressig, Taming perturbative divergences in asymptotically safe gravity, Nucl. Phys. B 824 (2010) 168 [arXiv:0902.4630] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Reuter and F. Saueressig, A Class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior, Phys. Rev. D 66 (2002) 125001 [hep-th/0206145] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. A. Codello, Polyakov Effective Action from Functional Renormalization Group Equation, Annals Phys. 325 (2010) 1727 [arXiv:1004.2171] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. A. Satz, A. Codello and F. Mazzitelli, Low energy Quantum Gravity from the Effective Average Action, Phys. Rev. D 82 (2010) 084011 [arXiv:1006.3808] [INSPIRE].

    ADS  Google Scholar 

  36. A. Eichhorn, H. Gies and M.M. Scherer, Asymptotically free scalar curvature-ghost coupling in Quantum Einstein Gravity, Phys. Rev. D 80 (2009) 104003 [arXiv:0907.1828] [INSPIRE].

    ADS  Google Scholar 

  37. K. Groh and F. Saueressig, Ghost wave-function renormalization in Asymptotically Safe Quantum Gravity, J. Phys. A 43 (2010) 365403 [arXiv:1001.5032] [INSPIRE].

    MathSciNet  Google Scholar 

  38. A. Eichhorn and H. Gies, Ghost anomalous dimension in asymptotically safe quantum gravity, Phys. Rev. D 81 (2010) 104010 [arXiv:1001.5033] [INSPIRE].

    ADS  Google Scholar 

  39. E. Manrique, M. Reuter and F. Saueressig, Matter Induced Bimetric Actions for Gravity, Annals Phys. 326 (2011) 440 [arXiv:1003.5129] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. E. Manrique, M. Reuter and F. Saueressig, Bimetric Renormalization Group Flows in Quantum Einstein Gravity, Annals Phys. 326 (2011) 463 [arXiv:1006.0099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. D. Becker and M. Reuter, Running boundary actions, Asymptotic Safety and black hole thermodynamics, JHEP 07 (2012) 172 [arXiv:1205.3583] [INSPIRE].

    Article  ADS  Google Scholar 

  42. D. Benedetti, K. Groh, P.F. Machado and F. Saueressig, The Universal RG Machine, JHEP 06 (2011) 079 [arXiv:1012.3081] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. K. Groh, S. Rechenberger, F. Saueressig and O. Zanusso, Higher Derivative Gravity from the Universal Renormalization Group Machine, PoS(EPS-HEP2011)124 [arXiv:1111.1743] [INSPIRE].

  44. A. Nink and M. Reuter, On the physical mechanism underlying Asymptotic Safety, arXiv:1208.0031 [INSPIRE].

  45. I. Donkin and J.M. Pawlowski, The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows, arXiv:1203.4207 [INSPIRE].

  46. S. Nagy, J. Krizsan and K. Sailer, Infrared fixed point in quantum Einstein gravity, JHEP 07 (2012) 102 [arXiv:1203.6564] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D. Litim and A. Satz, Limit cycles and quantum gravity, arXiv:1205.4218 [INSPIRE].

  48. T.R. Morris, Derivative expansion of the exact renormalization group, Phys. Lett. B 329 (1994) 241 [hep-ph/9403340] [INSPIRE].

    ADS  Google Scholar 

  49. T.R. Morris, Elements of the continuous renormalization group, Prog. Theor. Phys. Suppl. 131 (1998) 395 [hep-th/9802039] [INSPIRE].

    Article  ADS  Google Scholar 

  50. L. Canet, B. Delamotte, D. Mouhanna and J. Vidal, Nonperturbative renormalization group approach to the Ising model: A Derivative expansion at order ∂ 4, Phys. Rev. B 68 (2003) 064421 [hep-th/0302227] [INSPIRE].

    ADS  Google Scholar 

  51. D.F. Litim and D. Zappala, Ising exponents from the functional renormalisation group, Phys. Rev. D 83 (2011) 085009 [arXiv:1009.1948] [INSPIRE].

    ADS  Google Scholar 

  52. R. Flore, A. Wipf and O. Zanusso, Functional renormalization group of the non-linear σ-model and the O(N) universality class, arXiv:1207.4499 [INSPIRE].

  53. A. Codello, Scaling Solutions in Continuous Dimension, J. Phys. A 45 (2012) 465006 [arXiv:1204.3877] [INSPIRE].

    ADS  Google Scholar 

  54. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov and S. Zerbini, One-loop f(R) gravity in de Sitter universe, JCAP 02 (2005) 010 [hep-th/0501096] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. D. Benedetti and F. Caravelli, The Local potential approximation in quantum gravity, JHEP 06 (2012) 017 [Erratum ibid. 1210 (2012) 157] [arXiv:1204.3541] [INSPIRE].

  56. M. Reuter and H. Weyer, Background Independence and Asymptotic Safety in Conformally Reduced Gravity, Phys. Rev. D 79 (2009) 105005 [arXiv:0801.3287] [INSPIRE].

    ADS  Google Scholar 

  57. M. Reuter and H. Weyer, Conformal sector of Quantum Einstein Gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance, Phys. Rev. D 80 (2009) 025001 [arXiv:0804.1475] [INSPIRE].

    ADS  Google Scholar 

  58. M. Reuter and H. Weyer, The Role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity, Gen. Rel. Grav. 41 (2009) 983 [arXiv:0903.2971] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. P.F. Machado and R. Percacci, Conformally reduced quantum gravity revisited, Phys. Rev. D 80 (2009) 024020 [arXiv:0904.2510] [INSPIRE].

    ADS  Google Scholar 

  60. A. Bonanno, F. Guarnieri and F. Guarnieri, Universality and Symmetry Breaking in Conformally Reduced Quantum Gravity, arXiv:1206.6531 [INSPIRE].

  61. I.G. Avramidi, Heat kernel and quantum gravity, Lect. Notes Phys. M 64 (2000) 1.

    MathSciNet  Google Scholar 

  62. G.t. Hooft, The Conformal Constraint in Canonical Quantum Gravity, arXiv:1011.0061 [INSPIRE].

  63. K. Groh, F. Saueressig and O. Zanusso, Off-diagonal heat-kernel expansion and its application to fields with differential constraints, arXiv:1112.4856 [INSPIRE].

  64. A. Codello and O. Zanusso, On the non-local heat kernel expansion, arXiv:1203.2034 [INSPIRE].

  65. G.A. Vilkovisky, Heat kernel: rencontre entre physiciens et mathmaticiens, CERN-TH-6392-92 (1992).

  66. J. Dowker and R. Critchley, Effective Lagrangian and Energy Momentum Tensor in de Sitter Space, Phys. Rev. D 13 (1976) 3224 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  67. D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].

    ADS  Google Scholar 

  68. C. Rahmede, Old and new results from the Wilsonian approach to gravity, PoS(CLAQG08)011.

  69. G. Narain and C. Rahmede, Renormalization Group Flow in Scalar-Tensor Theories. II, Class. Quant. Grav. 27 (2010) 075002 [arXiv:0911.0394] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  72. N. Ohta, β-function and Asymptotic Safety in Three-dimensional Higher Derivative Gravity, Class. Quant. Grav. 29 (2012) 205012 [arXiv:1205.0476] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Codello, Large-N Quantum Gravity, New J. Phys. 14 (2012) 015009 [arXiv:1108.1908] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Demmel.

Additional information

ArXiv ePrint: 1208.2038

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demmel, M., Saueressig, F. & Zanusso, O. Fixed-Functionals of three-dimensional Quantum Einstein Gravity. J. High Energ. Phys. 2012, 131 (2012). https://doi.org/10.1007/JHEP11(2012)131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)131

Keywords

Navigation