Skip to main content
Log in

Universal thermal and electrical conductivity from holography

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

It is known from earlier work of Iqbal, Liu [1] that the boundary transport coefficients such as electrical conductivity (at vanishing chemical potential), shear viscosity etc. at low frequency and finite temperature can be expressed in terms of geometrical quantities evaluated at the horizon. In the case of electrical conductivity, at zero chemical potential gauge field fluctuation and metric fluctuation decouples, resulting in a trivial flow from horizon to boundary. In the presence of chemical potential, the story becomes complicated due to the fact that gauge field and metric fluctuation can no longer be decoupled. This results in a nontrivial flow from horizon to boundary. Though horizon conductivity can be expressed in terms of geometrical quantities evaluated at the horizon, there exist no such neat result for electrical conductivity at the boundary. In this paper we propose an expression for boundary conductivity expressed in terms of geometrical quantities evaluated at the horizon and thermodynamic quantities. We also consider the theory at finite cutoff recently constructed in [2], at radius r c outside the horizon and give an expression for cutoff dependent electrical conductivity (σ(r c )), which interpolates smoothly between horizon conductivity σ H (r c r h ) and boundary conductivity σ B (r c → ∞). Using the results about the conductivity we gain much insight into the universality of thermal conductivity to viscosity ratio proposed in [3].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

    ADS  Google Scholar 

  2. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian Approach to Fluid/Gravity Duality, arXiv:1006.1902 [SPIRES].

  3. S. Jain, Universal properties of thermal and electrical conductivity of gauge theory plasmas from holography, JHEP 06 (2010) 023 [arXiv:0912.2719] [SPIRES].

    Article  ADS  Google Scholar 

  4. R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Jain, Holographic electrical and thermal conductivity in strongly coupled gauge theory with multiple chemical potentials, JHEP 03 (2010) 101 [arXiv:0912.2228] [SPIRES].

    Article  ADS  Google Scholar 

  6. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Density Dependence of Transport Coefficients from Holographic Hydrodynamics, Prog. Theor. Phys. 120 (2008) 833 [arXiv:0806.4460] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  11. K. Maeda, M. Natsuume and T. Okamura, Dynamic critical phenomena in the AdS/CFT duality, Phys. Rev. D 78 (2008) 106007 [arXiv:0809.4074] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. S. Jain, S. Mukherji and S. Mukhopadhyay, Notes on R-charged black holes near criticality and gauge theory, JHEP 11 (2009) 051 [arXiv:0906.5134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [SPIRES].

    ADS  Google Scholar 

  14. P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78 (2008) 066009 [arXiv:0806.0110] [SPIRES].

    ADS  Google Scholar 

  15. K. Behrndt, M. Cvetič and W.A. Sabra, Non-extreme black holes of five dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [SPIRES].

    Article  ADS  Google Scholar 

  16. S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. R.B. Mann, Lifshitz Topological Black Holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [SPIRES].

    Article  ADS  Google Scholar 

  19. G. Bertoldi, B.A. Burrington and A. Peet, Black Holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [SPIRES].

    ADS  Google Scholar 

  20. G. Bertoldi, B.A. Burrington and A.W. Peet, Thermodynamics of black branes in asymptotically Lifshitz spacetimes, Phys. Rev. D 80 (2009) 126004 [arXiv:0907.4755] [SPIRES].

    ADS  Google Scholar 

  21. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].

  22. D.-W. Pang, A Note on Black Holes in Asymptotically Lifshitz Spacetime, arXiv:0905.2678 [SPIRES].

  23. K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [SPIRES].

    ADS  Google Scholar 

  24. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz Black Hole in Three Dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [SPIRES].

    ADS  Google Scholar 

  25. R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz Black Hole in Four Dimensional R 2 Gravity, JHEP 10 (2009) 080 [arXiv:0909.2807] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. S.-J. Sin, S.-S. Xu and Y. Zhou, Holographic Superconductor for a Lifshitz fixed point, arXiv:0909.4857 [SPIRES].

  27. Y.S. Myung, Y.-W. Kim and Y.-J. Park, Dilaton gravity approach to three dimensional Lifshitz black hole, arXiv:0910.4428 [SPIRES].

  28. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Analytic Lifshitz black holes in higher dimensions, JHEP 04 (2010) 030 [arXiv:1001.2361] [SPIRES].

    Article  ADS  Google Scholar 

  29. T. Azeyanagi, W. Li and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP 06 (2009) 084 [arXiv:0905.0688] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. W. Li, T. Nishioka and T. Takayanagi, Some No-go Theorems for String Duals of Non-relativistic Lifshitz-like Theories, JHEP 10 (2009) 015 [arXiv:0908.0363] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. E.J. Brynjolfsson, U.H. Danielsson, L. Thorlacius and T. Zingg, Holographic Superconductors with Lifshitz Scaling, J. Phys. A 43 (2010) 065401 [arXiv:0908.2611] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. D.-W. Pang, On Charged Lifshitz Black Holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [SPIRES].

    Article  ADS  Google Scholar 

  33. D.-W. Pang, Conductivity and Diffusion Constant in Lifshitz Backgrounds, JHEP 01 (2010) 120 [arXiv:0912.2403] [SPIRES].

    Article  ADS  Google Scholar 

  34. B. Hassanain and M. Schvellinger, Towards ’t Hooft parameter corrections to charge transport in strongly-coupled plasma, JHEP 10 (2010) 068 [arXiv:1006.5480] [SPIRES].

    Article  Google Scholar 

  35. M. Edalati, J.I. Jottar and R.G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP 01 (2010) 018 [arXiv:0910.0645] [SPIRES].

    Article  ADS  Google Scholar 

  36. G.L. Cardoso and V. Grass, On five-dimensional non-extremal charged black holes and FRW cosmology, Nucl. Phys. B 803 (2008) 209 [arXiv:0803.2819] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Torabian and H.-U. Yee, Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-Abelian symmetries, JHEP 08 (2009) 020 [arXiv:0903.4894] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Jain.

Additional information

ArXiv ePrint: 1008.2944

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S. Universal thermal and electrical conductivity from holography. J. High Energ. Phys. 2010, 92 (2010). https://doi.org/10.1007/JHEP11(2010)092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)092

Keywords

Navigation