Skip to main content
Log in

Vorticesin(2+1)d conformal fluids

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study isolated, stationary, axially symmetric vortex solutions in (2+ 1)-dimensional viscous conformal fluids. The equations describing them can be brought to the form of three coupled first order ODEs for the radial and rotational velocities and the temperature. They have a rich space of solutions characterized by the radial energy and angular momentum fluxes. We do a detailed study of the phases in the one-parameter family of solutions with no energy flux. This parameter is the product of the asymptotic vorticity and temperature. When it is large, the radial fluid velocity reaches the speed of light at a finite inner radius. When it is below a critical value, the velocity is everywhere bounded, but at the origin there is a discontinuity. We comment on turbulence, potential gravity duals, non-viscous limits and non-relativistic limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Richardson, Weather prediction by numerical process, Cambridge University Press, Cambridge U.K. (1922).

    MATH  Google Scholar 

  2. H. Miura, Analysis of vortex structures in compressible isotropic turbulence, Comput. Phys. Commun. 147 (2002) 552.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. H.K. Moffat, S. Kida and K. Okhitani, Stretched vortices — The sinews of turbulence high Reynolds number asymptotics, J. Fluid Mech. 259 (1994) 241.

    Article  MathSciNet  ADS  Google Scholar 

  4. U. Frisch, Turbulence: the legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

  5. L. Onsager, Statistical hydrodynamics, Nuovo Cim. 6 (1949) 279.

    Article  MathSciNet  Google Scholar 

  6. R. Robert and J. Sommeria, Statistical equilibrium states for two dimensional flows, J. Fluid Mech. 229 (1991) 291.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. R.H. Kraichnan, Inertial ranges in two dimensional turbulence, Phys. Fluids 10 (1967) 1417.

    Article  ADS  Google Scholar 

  8. J. C. McWilliams, The vortices of two-dimensional turbulence, J. Fluid Mech. 219 (1990) 361.

    Article  ADS  Google Scholar 

  9. J. M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  10. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. E. Witten, Anti-de Sitter space and holography, Adv. T heor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  12. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  15. S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian Approach to Fluid/Gravity Duality, arXiv:1006.1902 [SPIRES].

  17. V.A. Belinsky, I.M. Khalatnikov and E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys. 19 (1970) 525 [SPIRES].

    Article  ADS  Google Scholar 

  18. P. Romatschke, Fluid turbulence and eddy viscosity in relativistic heavy-ion collisions, Prog. T heor. Phys. Suppl. 174 (2008) 137 [arXiv:0710.0016] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  19. H. Liu, K. Rajagopal and U.A. Wiedemann, An AdS/CFT calculation of screening in a hot wind, Phys. Rev. Lett. 98 (2007) 182301 [hep-ph/0607062] [SPIRES].

    Article  ADS  Google Scholar 

  20. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. E. Caceres, M. Natsuume and T. Okamura, Screening length in plasma winds, JHEP 10 (2006) 011 [hep-th/0607233] [SPIRES].

    Article  ADS  Google Scholar 

  22. H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [SPIRES].

    Article  ADS  Google Scholar 

  23. M. Chernicoff, J. A. Garcia and A. Guijosa, The energy of a moving quark-antiquark pair in an N = 4 SY M plasma, JHEP 09 (2006) 068 [hep-th/0607089] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N =4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. C. Krishnan, Baryon dissociation in a strongly coupled plasma, JHEP 12 (2008) 019 [arXiv:0809.5143] [SPIRES].

    Article  ADS  Google Scholar 

  26. J. D. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region, Phys. Rev. D 27 (1983) 140 [SPIRES].

    ADS  Google Scholar 

  27. V. Jejjala, D. Minic, Y.J. Ng and C.-H. Tze, String theory and turbulence, arXiv:0912.2725 [SPIRES].

  28. D.M. Sedrakyan and G.K. Savvidi, Form of quantum vortex filaments in rotating neutron stars, A strophysics 15 (1979) 231 [A strofizika 15 (1979) 359].

    ADS  Google Scholar 

  29. M.G. Alford, A. Schmitt, K. Rajagopal and T. Schafer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [SPIRES].

    Article  ADS  Google Scholar 

  30. V.E. Hubeny, D. Marolf and M. Rangamani, Hawking radiation in large-N strongly-coupled field theories, Class. Quant. Grav. 27 (2010) 095015 [arXiv:0908.2270] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. V.E. Hubeny, D. Marolf and M. Rangamani, Black funnels and droplets from the AdS C-metrics, Class. Quant. Grav. 27 (2010) 025001 [arXiv:0909.0005] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. J.F. Plebanski and M. Demianski, Rotating, charged and uniformly accelerating mass in general relativity, Ann. Phys. 98 (1976) 98 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. R. Emparan, G.T. Horowitz and R.C. Myers, Exact description of black holes on branes. II: comparison with BTZ black holes and black strings, JHEP 01 (2000) 021 [hep-th/9912135] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, Ph.D. thesis, Université Pierre et Marie Curie, Paris VI, France (1979).

  35. K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale University Press, New Haven U.S.A. (1986), pag. 367 [SPIRES].

    Google Scholar 

  36. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [SPIRES].

    Article  ADS  Google Scholar 

  37. R. Emparan and H.S. Reall, A rotating black ring in five dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. A.A. Pomeransky and R.A. Sen’kov, Black ring with two angular momenta, hep-th/0612005 [SPIRES].

  39. H. Elvang and P. Figueras, Black Saturn, JHEP 05 (2007) 050 [hep-th/0701035] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. J. Evslin and C. Krishnan, Metastable black Saturns, JHEP 09 (2008) 003 [arXiv:0804.4575] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. H. Iguchi and T. Mishima, Black di-ring and infinite nonuniqueness, Phys. Rev. D 75 (2007) 064018 [Erratum ibid. D 78 (2008) 069903] [hep-th/0701043] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. J. Evslin and C. Krishnan, The black di-ring: an inverse scattering construction, Class. Quant. Grav. 26 (2009) 125018 [arXiv:0706.1231] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. K. Izumi, Orthogonal black di-ring solution, Prog. Theor. Phys. 119 (2008) 757 [arXiv:0712.0902] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  44. H. Elvang and M.J. Rodriguez, Bicycling black rings, JHEP 04 (2008) 045 [arXiv:0712.2425] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. R. Emparan and H.S. Reall, Black holes in higher dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [SPIRES].

    Google Scholar 

  46. J. Evslin, Geometric engineering 5D black holes with rod diagrams, JHEP 09 (2008) 004 [arXiv:0806.3389] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. H. Iguchi and T. Mishima, Thermodynamic black di-rings, arXiv:1008.4290 [SPIRES].

  48. W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Ann. Phys. 118 (1979) 341 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. S. Khlebnikov, M. Kruczenski and G. Michalogiorgakis, Shock waves in strongly coupled plasmas, arXiv:1004.3803 [SPIRES].

  51. J. Evslin and G. Ricco, The surface layers dual to hydrodynamic boundaries, arXiv:1009.0175 [SPIRES].

  52. I. Fouxon and Y. Oz, Conformal field theory as microscopic dynamics of incompressible euler and Navier-Stokes equations, Phys. Rev. Lett. 101 (2008) 261602 [arXiv:0809.4512] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. L.D. Landau and E.M. Lifshitz, Fluid Dynamics, 2nd edition, Butterworth-Heinemann, U.K. (1987).

    Google Scholar 

  54. K. Huang, Statistical mechanics, 2nd edition, Wiley & Sons Inc., U.S.A. (1987).

  55. M. Van Raamsdonk, Black hole dynamics from atmospheric science, JHEP 05 (2008) 106 [arXiv:0802.3224] [SPIRES].

    Article  ADS  Google Scholar 

  56. A. Bagchi and R. Gopakumar, Galilean conformal algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. P.A. Horvathy and P.M. Zhang, Non-relativistic conformal symmetries in fluid mechanics, Eur. Phys. J. C 65 (2010) 607 [arXiv:0906.3594] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chethan Krishnan.

Additional information

ArXiv ePrint: 1007.4452

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evslin, J., Krishnan, C. Vorticesin(2+1)d conformal fluids. J. High Energ. Phys. 2010, 28 (2010). https://doi.org/10.1007/JHEP10(2010)028

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)028

Keywords

Navigation