Skip to main content
Log in

The many phases of holographic superfluids

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate holographic superfluids in AdS d+1 with d =3, 4 in the nonbackreacted approximation for various masses of the scalar field. In d =3 the phase structure is universal for all the masses that we consider: the critical temperature decreases as the superfluid velocity increases, and as it is cranked high enough, the order of the phase transition changes from second to first. Surprisingly, in d = 4 we find that the phase structure is more intricate. For sufficiently high mass, there is always a second order phase transition to the normal phase, no matter how high the superfluid velocity. For some parameters, as we lower the temperature, this transition happens before a first order transition to a new super conducting phase. Across this first order transition, the gap in the transverse conductivity jumps from almost zero to about half its maximum value. We also introduce a double scaling limit where we can study the phase transitions(semi-)analytically in the large velocity limit. The results corroborate and complement our numerical results. In d =4, this approach has the virtue of being fully analytically tractable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200][SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109][SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150][SPIRES].

    MATH  MathSciNet  Google Scholar 

  4. M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On holographic p-wave superfluids with back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515][SPIRES].

    ADS  Google Scholar 

  5. S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977][SPIRES].

    ADS  Google Scholar 

  6. P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: vector hair for an AdS black hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494][SPIRES].

    ADS  Google Scholar 

  7. C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870][SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295][SPIRES].

    Article  ADS  Google Scholar 

  9. V.E. Hubeny, X. Liu, M. Rangamani and S. Shenker, Comments on cosmic censorship in AdS/CFT, JHEP 12 (2004) 067 [hep-th/0403198][SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: holographic pion superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970][SPIRES].

    Article  ADS  Google Scholar 

  11. D. Arean, M. Bertolini, J. Evslin and T. Prochazka, On holographic superconductors with DC current, JHEP 07 (2010)060 [arXiv:1003.5661][SPIRES].

    Article  ADS  Google Scholar 

  12. G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077][SPIRES].

    ADS  Google Scholar 

  13. D. Marolf and S.F. Ross, Boundary conditions and new dualities: Vector fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113][SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Sonner, A rotating holographic superconductor, Phys. Rev. D 80 (2009) 084031 [arXiv:0903.0627][SPIRES].

    ADS  Google Scholar 

  15. Y. Brihaye and B. Hartmann, Holographic superfluids as duals of rotating black strings, JHEP 09 (2010) 002 [arXiv:1006.1562][SPIRES].

    Article  ADS  Google Scholar 

  16. J. Sonner and B. Withers, A gravity derivation of the Tisza-Landau model in AdS/CFT, Phys. Rev. D 82 (2010) 026001 [arXiv:1004.2707][SPIRES].

    ADS  Google Scholar 

  17. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563][SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Tinkham, Introduction to superconductivity, 2nd edition, Dover Inc., New York U.S.A. (1996).

  19. C.P. Herzog, An analytic holographic superconductor, Phys. Rev. D 81 (2010)126009 [arXiv:1003.3278][SPIRES].

    ADS  Google Scholar 

  20. C.P. Herzog and S.S. Pufu, The second sound of SU(2), JHEP 04 (2009)126 [arXiv:0902.0409][SPIRES].

    Article  ADS  Google Scholar 

  21. V. Keranen, E. Keski-Vakkuri, S. Nowling and K.P. Yogendran, Inhomogeneous structures in holographic superfluids: I. dark solitons, Phys. Rev. D 81 (2010)126011 [arXiv:0911.1866] [SPIRES].

    ADS  Google Scholar 

  22. M. Montull, A. Pomarol and P.J. Silva, The holographic superconductor vortex, Phys. Rev. Lett. 103 (2009) 091601 [arXiv:0906.2396][SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Albash and C.V. Johnson, Vortex and droplet engineering in holographic superconductors, Phys. Rev. D 80 (2009) 126009 [arXiv:0906.1795][SPIRES].

    ADS  Google Scholar 

  24. K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D 81 (2010) 026002 [arXiv:0910.4475][SPIRES].

    ADS  Google Scholar 

  25. V. Keranen, E. Keski-Vakkuri, S. Nowling and K.P. Yogendran, Inhomogeneous structures in holographic superfluids: II. vortices, Phys. Rev. D 81 (2010) 126012 [arXiv:0912.4280] [SPIRES].

    ADS  Google Scholar 

  26. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104][SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677][SPIRES].

    Article  ADS  Google Scholar 

  28. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Hard-gapped holographic superconductors, Phys. Lett. B 689 (2010) 45 [arXiv:0911.4999][SPIRES].

    ADS  Google Scholar 

  29. S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483][SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. H. Elvang and P. Figueras, Black Saturn, JHEP 05 (2007)050 [hep-th/0701035][SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. H. Iguchi and T. Mishima, Black di-ring and infinite nonuniqueness, Phys. Rev. D 75 (2007) 064018 [Erratum ibid. D 78 (2008) 069903][hep-th/0701043] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. J. Evslin and C. Krishnan, The black di-ring: an inverse scattering construction, Class. Quant. Grav. 26 (2009) 125018 [arXiv:0706.1231][SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. K. Izumi, Orthogonal black di-ring solution, Prog. Theor. Phys. 119 (2008) 757 [arXiv:0712.0902][SPIRES].

    Article  MATH  ADS  Google Scholar 

  34. H. Elvang and M.J. Rodriguez, Bicycling black rings, JHEP 04 (2008) 045 [arXiv:0712.2425][SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chethan Krishnan.

Additional information

ArXiv ePrint: 1006.5165

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arean, D., Basu, P. & Krishnan, C. The many phases of holographic superfluids. J. High Energ. Phys. 2010, 6 (2010). https://doi.org/10.1007/JHEP10(2010)006

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)006

Keywords

Navigation