Skip to main content
Log in

Massive color-octet bosons: bounds on effects in top-quark pair production

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A critical survey of the existing direct and indirect constraints on massive spin-one color octets is presented. Since such new degrees of freedom appear in any extension of the color gauge group to a product of at least two SU(3) factors, we keep our discussion as independent as possible from the underlying theory. In the framework of scenarios that involve flavor non-universal couplings, we show that excessive flavor-changing neutral currents can be avoided by a suitable alignment in flavor space. Constraints from electroweak precision observables and direct production at hadron colliders still leave space for sizable new-physics effects in top-quark pair production, in particular a large forward-backward asymmetry. In this context, we derive a model-independent upper bound on the asymmetry that applies whenever top-antitop production receives the dominant corrections from s-channel exchange of a new single color-octet resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [SPIRES].

    Article  ADS  Google Scholar 

  3. P.H. Frampton and S.L. Glashow, Chiral color: an alternative to the Standard Model, Phys. Lett. B 190 (1987) 157 [SPIRES].

    ADS  Google Scholar 

  4. P.H. Frampton and S.L. Glashow, Unifiable chiral color with natural GIM mechanism, Phys. Rev. Lett. 58 (1987) 2168 [SPIRES].

    Article  ADS  Google Scholar 

  5. J. Bagger, C. Schmidt and S. King, Axigluon production in hadronic collisions, Phys. Rev. D 37 (1988) 1188 [SPIRES].

    ADS  Google Scholar 

  6. C.T. Hill, Topcolor: top quark condensation in a gauge extension of the Standard Model, Phys. Lett. B 266 (1991) 419 [SPIRES].

    ADS  Google Scholar 

  7. C.T. Hill, Topcolor assisted technicolor, Phys. Lett. B 345 (1995) 483 [hep-ph/9411426] [SPIRES].

    ADS  Google Scholar 

  8. C.T. Hill and S.J. Parke, Top production: sensitivity to new physics, Phys. Rev. D 49 (1994) 4454 [hep-ph/9312324] [SPIRES].

    Article  ADS  Google Scholar 

  9. R.S. Chivukula, A.G. Cohen and E.H. Simmons, New strong interactions at the Tevatron?, Phys. Lett. B 380 (1996) 92 [hep-ph/9603311] [SPIRES].

    ADS  Google Scholar 

  10. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].

    Article  ADS  Google Scholar 

  11. K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].

    ADS  Google Scholar 

  12. B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [SPIRES].

    Article  ADS  Google Scholar 

  13. CDF collaboration, E. Thomson et al., Combination of CDF top quark pair production cross section measurements with up to 4.6 fb1, conference note 9913, http://www-cdf.fnal.gov/physics/new/top/2009/xsection/ttbar_combined_46invfb/, Fermilab, Batavia U.S.A. (2009).

  14. DØ collaboration, Combination and interpretation of \( t\bar{t} \) cross section measurements with thedetector, conference note 5907-CONF, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T79/, Fermilab, Batavia U.S.A. (2009).

  15. CDF collaboration, T. Aaltonen et al., First measurement of the \( t\bar{t} \) differential cross section \( {{{d\sigma }} \left/ {{d{M_{t\bar{t}}}}} \right.} \) in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [SPIRES].

    Article  ADS  Google Scholar 

  16. CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [SPIRES].

    ADS  Google Scholar 

  17. T.A. Schwarz, Measurement of the front back asymmetry in top-antitop quark pairs produced in proton-antiproton collisions at center of mass energy = 1.96 TeV, FERMILAB-THESIS-2006-51, Fermilab, Batavia U.S.A. (2006) [UMI-32-38081] [SPIRES].

  18. D0 collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [SPIRES].

    Article  ADS  Google Scholar 

  19. CDF collaboration, T. Aaltonen et al., Forward-backward asymmetry in top quark production in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [SPIRES].

    Article  ADS  Google Scholar 

  20. DØ collaboration, Measurement of the forward-backward production asymmetry of t and \( \bar{t} \) quarks in \( p\bar{p} \to t\bar{t} \) events, conference note 6062-CONF, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T90/, Fermilab, Batavia U.S.A. (2010).

  21. CDF collaboration, Measurement of the forward backward asymmetry in top pair production in the dilepton decay channel using 5.1 fb−1, CDF note 10398, http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/, Fermilab, Batavia U.S.A. (2011).

  22. ALEPH collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].

    ADS  Google Scholar 

  23. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  24. CMS collaboration, V. Khachatryan et al., Search for dijet resonances in 7 TeV pp collisions at CMS, Phys. Rev. Lett. 105 (2010) 211801 [Erratum ibid. 106 (2010) 029902] [arXiv:1010.0203] [SPIRES].

    Article  ADS  Google Scholar 

  25. CMS collaboration, V. Khachatryan et al., Measurement of dijet angular distributions and search for quark compositeness in pp collisions at 7 TeV, Phys. Rev. Lett. 106 (2011) 201804 [arXiv:1102.2020] [SPIRES].

    Article  ADS  Google Scholar 

  26. ATLAS collaboration, G. Aad et al., Search for new physics in dijet mass and angular distributions in pp collisions at \( \sqrt {s} = 7 \) TeV measured with the ATLAS detector, New J. Phys. 13 (2011) 053044 [arXiv:1103.3864] [SPIRES].

    Article  ADS  Google Scholar 

  27. P.H. Frampton, J. Shu and K. Wang, Axigluon as possible explanation for \( p\bar{p} \to t\bar{t} \) forward-backward asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [SPIRES].

    ADS  Google Scholar 

  28. Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-backward asymmetry of top quark pair production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [SPIRES].

    ADS  Google Scholar 

  29. R.S. Chivukula, E.H. Simmons and C.P. Yuan, Axigluons cannot explain the observed top quark forward-backward asymmetry, Phys. Rev. D 82 (2010) 094009 [arXiv:1007.0260] [SPIRES].

    ADS  Google Scholar 

  30. T. Han, I. Lewis and Z. Liu, Colored resonant signals at the LHC: largest rate and simplest topology, JHEP 12 (2010) 085 [arXiv:1010.4309] [SPIRES].

    Article  ADS  Google Scholar 

  31. Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a Tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [SPIRES].

    Article  ADS  Google Scholar 

  32. J.A. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron \( t\bar{t} \) asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [SPIRES].

    Article  ADS  Google Scholar 

  33. M.I. Gresham, I.-W. Kim and K.M. Zurek, On models of new physics for the Tevatron top A FB, Phys. Rev. D 83 (2011) 114027 [arXiv:1103.3501] [SPIRES].

    ADS  Google Scholar 

  34. J.L. Hewett, J. Shelton, M. Spannowsky, T.M.P. Tait and M. Takeuchi, A FB t meets LHC, arXiv:1103.4618 [SPIRES].

  35. R. Barcelo, A. Carmona, M. Masip and J. Santiago, Gluon excitations in \( t\bar{t} \) production at hadron colliders, Phys. Rev. D 84 (2011) 014024 [arXiv:1105.3333] [SPIRES].

    ADS  Google Scholar 

  36. J.A. Aguilar-Saavedra and M. Pérez-Victoria, Asymmetries in \( t\bar{t} \) production: LHC versus Tevatron, arXiv:1105.4606 [SPIRES].

  37. O. Antunano, J.H. Kühn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].

    ADS  Google Scholar 

  38. P. Ferrario and G. Rodrigo, Massive color-octet bosons and the charge asymmetries of top quarks at hadron colliders, Phys. Rev. D 78 (2008) 094018 [arXiv:0809.3354] [SPIRES].

    ADS  Google Scholar 

  39. P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [SPIRES].

    ADS  Google Scholar 

  40. L3 collaboration, P. Achard et al., Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [SPIRES].

    ADS  Google Scholar 

  41. CDF collaboration, A. Lister, Search for heavy top-like quarks t′ → Wq using lepton plus jets events in 1.96 TeV \( p\bar{p} \) collisions, arXiv:0810.3349 [SPIRES].

  42. CDF collaboration, T. Aaltonen et al., Search for heavy bottom-like quarks decaying to an electron or muon and jets in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 106 (2011) 141803 [arXiv:1101.5728] [SPIRES].

    Article  ADS  Google Scholar 

  43. CMS collaboration, S. Chatrchyan et al., Search for a heavy bottom-like quark in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 701 (2011) 204 [arXiv:1102.4746] [SPIRES].

    ADS  Google Scholar 

  44. G. Buchalla, G. Burdman, C.T. Hill and D. Kominis, GIM violation and new dynamics of the third generation, Phys. Rev. D 53 (1996) 5185 [hep-ph/9510376] [SPIRES].

    ADS  Google Scholar 

  45. G. Burdman, K.D. Lane and T. Rador, Anti-B B mixing constrains topcolor-assisted technicolor, Phys. Lett. B 514 (2001) 41 [hep-ph/0012073] [SPIRES].

    ADS  Google Scholar 

  46. A. Martin and K. Lane, CP violation and flavor mixing in technicolor models, Phys. Rev. D 71 (2005) 015011 [hep-ph/0404107] [SPIRES].

    ADS  Google Scholar 

  47. A.J. Buras, S.Jäger and J. Urban, Master formulae forF = 2 NLO-QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [SPIRES].

    Article  ADS  Google Scholar 

  48. J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [SPIRES].

    ADS  Google Scholar 

  49. V. Lubicz and C. Tarantino, Flavour physics and Lattice QCD: averages of lattice inputs for the Unitarity Triangle Analysis, Nuovo Cim. B 123 (2008) 674 [arXiv:0807.4605] [SPIRES].

    ADS  Google Scholar 

  50. A.J. Buras, D. Guadagnoli and G. Isidori, On ϵ K beyond lowest order in the Operator Product Expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [SPIRES].

    ADS  Google Scholar 

  51. CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [SPIRES].

    Article  ADS  Google Scholar 

  52. J. Brod and M. Gorbahn, ϵ K at next-to-next-to-leading order: the charm-top-quark contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684] [SPIRES].

    ADS  Google Scholar 

  53. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  54. Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and tau-lepton properties, arXiv:1010.1589 [SPIRES].

  55. C.T. Hill and X.-m. Zhang, \( Z \to b\bar{b} \) versus dynamical electroweak symmetry breaking involving the top quark, Phys. Rev. D 51 (1995) 3563 [hep-ph/9409315] [SPIRES].

    ADS  Google Scholar 

  56. D0 collaboration, V.M. Abazov et al., Measurement of sin2 \( \theta_{\text{eff}}^{\text{lept}} \) and Z-light quark couplings using the forward-backward charge asymmetry in \( p\bar{p} \to {{Z} \left/ {{{\gamma^*}}} \right.} \to {e^{+} }{e^{-} } \) events with L = 5.0 fb−1 at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. D 84 (2011) 012007 [arXiv:1104.4590] [SPIRES].

    ADS  Google Scholar 

  57. U. Baur, A. Juste, L.H. Orr and D. Rainwater, Probing electroweak top quark couplings at hadron colliders, Phys. Rev. D 71 (2005) 054013 [hep-ph/0412021] [SPIRES].

    ADS  Google Scholar 

  58. U. Baur, A. Juste, D. Rainwater and L.H. Orr, Improved measurement of ttZ couplings at the CERN LHC, Phys. Rev. D 73 (2006) 034016 [hep-ph/0512262] [SPIRES].

    ADS  Google Scholar 

  59. E.L. Berger, Q.-H. Cao and I. Low, Modelindependent constraintsamongthe Wtb, Zbb and Ztt couplings, Phys. Rev. D 80 (2009) 074020 [arXiv:0907.2191] [SPIRES].

    ADS  Google Scholar 

  60. J.H. Field, Indications for an anomalous righthanded coupling of the b-quark from a model independent analysis of LEP and SLD data on Z decays, Mod. Phys. Lett. A 13 (1998) 1937 [hep-ph/9801355] [SPIRES].

    ADS  Google Scholar 

  61. A.B. Arbuzov et al., ZFITTER: a semi-analytical program for fermion pair production in e + e annihilation, from version 6.21 to version 6.42, Comput. Phys. Commun. 174 (2006) 728 [hep-ph/0507146] [SPIRES].

    Article  ADS  Google Scholar 

  62. CDF and D0 collaboration and others, Combination of CDF and DØ results on the mass of the top quark, arXiv:1007.3178 [SPIRES].

  63. G. Burdman, R.S. Chivukula and N.J. Evans, Precision bounds on flavor gauge bosons, Phys. Rev. D 61 (2000) 035009 [hep-ph/9906292] [SPIRES].

    ADS  Google Scholar 

  64. H.-J. He, N. Polonsky and S.-F. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [SPIRES].

    ADS  Google Scholar 

  65. A. Bridgeman, Measurement of the \( t\bar{t} \) differential cross section, \( {{{d\sigma }} \left/ {{d{M_{t\bar{t}}}}} \right.} \) , in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, FERMILAB-THESIS-2008-50, Fermilab, Batavia U.S.A. [SPIRES].

  66. CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [SPIRES].

    ADS  Google Scholar 

  67. ATLAS collaboration, G. Aad et al., Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC, Phys. Rev. Lett. 105 (2010) 161801 [arXiv:1008.2461] [SPIRES].

    Article  ADS  Google Scholar 

  68. D0 collaboration, V.M. Abazov et al., Measurement of dijet angular distributions at \( \sqrt {s} = 1.96 \) TeV and searches for quark compositeness and extra spatial dimensions, Phys. Rev. Lett. 103 (2009) 191803 [arXiv:0906.4819] [SPIRES].

    Article  ADS  Google Scholar 

  69. ATLAS collaboration, G. Aad et al., Search for quark contact interactions in dijet angular distributions in pp collisions at \( \sqrt {s} = 7 \) TeV measured with the ATLAS detector, Phys. Lett. B 694 (2011) 327 [arXiv:1009.5069] [SPIRES].

    ADS  Google Scholar 

  70. L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS 5, JHEP 11 (2001) 003 [hep-th/0108114] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  71. M. Bauer, F. Goertz, U. Haisch, T. Pfoh and S. Westhoff, Top-quark forward-backward asymmetry in Randall-Sundrum models beyond the leading order, JHEP 11 (2010) 039 [arXiv:1008.0742] [SPIRES].

    Article  ADS  Google Scholar 

  72. J. Campbell and R.K. Ellis, MCFM — a Monte Carlo for FeMtobarn processes at hadron colliders homepage, http://mcfm.fnal.gov, Fermilab, Batavia U.S.A. (2011).

  73. P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B 303 (1988) 607 [SPIRES].

    Article  ADS  Google Scholar 

  74. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].

    Article  ADS  Google Scholar 

  75. R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1 [SPIRES].

    Google Scholar 

  76. E. Eichten, K.D. Lane and M.E. Peskin, New tests for quark and lepton substructure, Phys. Rev. Lett. 50 (1983) 811 [SPIRES].

    Article  ADS  Google Scholar 

  77. K.D. Lane, Electroweak and flavor dynamics at hadron colliders, hep-ph/9605257 [SPIRES].

  78. J. Gao, C.S. Li, J. Wang, H.X. Zhu and C.P. Yuan, Next-to-leading QCD effect to the quark compositeness search at the LHC, Phys. Rev. Lett. 106 (2011) 142001 [arXiv:1101.4611] [SPIRES].

    Article  ADS  Google Scholar 

  79. UA1 collaboration, C. Albajar et al., Two jet mass distributions at the CERN proton-anti-proton collider, Phys. Lett. B 209 (1988) 127 [SPIRES].

    ADS  Google Scholar 

  80. CDF collaboration, F. Abe et al., Search for quark compositeness, axigluons and heavy particles using the dijet invariant mass spectrum observed in \( p\bar{p} \) collisions, Phys. Rev. Lett. 71 (1993) 2542 [SPIRES].

    Article  ADS  Google Scholar 

  81. C.D. Carone and H. Murayama, Possible light U(1) gauge boson coupled to baryon number, Phys. Rev. Lett. 74 (1995) 3122 [hep-ph/9411256] [SPIRES].

    Article  ADS  Google Scholar 

  82. B. Holdom, New third family flavor physics: vertex corrections, Phys. Lett. B 351 (1995) 279 [hep-ph/9502273] [SPIRES].

    ADS  Google Scholar 

  83. A.I. Davydychev and J.B. Tausk, Two loop selfenergy diagrams with different masses and the momentum expansion, Nucl. Phys. B 397 (1993) 123 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Westhoff.

Additional information

ArXiv ePrint: 1106.0529

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haisch, U., Westhoff, S. Massive color-octet bosons: bounds on effects in top-quark pair production. J. High Energ. Phys. 2011, 88 (2011). https://doi.org/10.1007/JHEP08(2011)088

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)088

Keywords

Navigation